scholarly journals Therapeutic Uses of Red Macroalgae

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4411
Author(s):  
Mona M. Ismail ◽  
Badriyah S. Alotaibi ◽  
Mostafa M. EL-Sheekh

Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 436
Author(s):  
Jin-Young Yang ◽  
Sun Young Lim

Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5–20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.


Author(s):  
Marc Lahaye ◽  
Bimalendu Ray ◽  
Stéphanie Baumberger ◽  
Bernard Quemener ◽  
Monique A. V. Axelos

Hydrobiologia ◽  
1996 ◽  
Vol 326-327 (1) ◽  
pp. 473-480 ◽  
Author(s):  
Marc Lahaye ◽  
Bimalendu Ray ◽  
Stephanie Baumberger ◽  
Bernard Quemener ◽  
Monique A. V. Axelos

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 524a-524 ◽  
Author(s):  
Kent Cushman ◽  
Thomas Horgan

Tomato was grown in Fall 1997 with swine effluent or commercial soluble fertilizer in a plasticulture production system. Four cultivars, `Mountain Delight', `Celebrity', `Equinox', and `Sunbeam', were transplanted to raised beds with plastic mulch and drip irrigation. Preplant fertilizer was not applied. Effluent from the Wiley L. Bean Swine Demonstration Unit's secondary lagoon was filtered through in-line screen filters and applied directly to the plants through the irrigation system. Toward the end of each application, sodium hypochlorite was injected in the line to achieve a free chlorine concentration of ≈1%. Clogging of filters or drip emitters did not occur. Control plants received 100 ppm N from soluble fertilizer injected in irrigation lines supplied by a municipal water source. Number and weight of tomatoes from plants receiving swine effluent were equal to that of plants receiving soluble fertilizer. No differences in fruit quality were evident between treatments. Plant dry weight was also equal for three out of four cultivars. No differences in soil characteristics were detected between treatments after the study. Chemical analysis of the effluent showed a pH of 7.8 and nutrient concentrations of ≈110 ppm NH4-N, 57 ppm P2O5, 150 ppm K2O, and trace amounts of Cu and Zn. Though no differences in yield were detected in this study, the effluent's high pH and high NH4-N content need to be managed more closely for commercial tomato production.


Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vihang S. Thite ◽  
Anuradha S. Nerurkar

Abstract After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.


Sign in / Sign up

Export Citation Format

Share Document