scholarly journals Current Evidence on the Bioavailability of Food Bioactive Peptides

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4479 ◽  
Author(s):  
Lourdes Amigo ◽  
Blanca Hernández-Ledesma

Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.

2021 ◽  
Vol 22 (17) ◽  
pp. 9508
Author(s):  
Nhung Thi Phuong Nong ◽  
Jue-Liang Hsu

Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.


2013 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
Susanne E. Ulbrich ◽  
Eckhard Wolf ◽  
Stefan Bauersachs

Ongoing detailed investigations into embryo–maternal communication before implantation reveal that during early embryonic development a plethora of events are taking place. During the sexual cycle, remodelling and differentiation processes in the endometrium are controlled by ovarian hormones, mainly progesterone, to provide a suitable environment for establishment of pregnancy. In addition, embryonic signalling molecules initiate further sequences of events; of these molecules, prostaglandins are discussed herein as specifically important. Inadequate receptivity may impede preimplantation development and implantation, leading to embryonic losses. Because there are multiple factors affecting fertility, receptivity is difficult to comprehend. This review addresses different models and methods that are currently used and discusses their respective potentials and limitations in distinguishing key messages out of molecular twitter. Transcriptome, proteome and metabolome analyses generate comprehensive information and provide starting points for hypotheses, which need to be substantiated using further confirmatory methods. Appropriate in vivo and in vitro models are needed to disentangle the effects of participating factors in the embryo–maternal dialogue and to help distinguish associations from causalities. One interesting model is the study of somatic cell nuclear transfer embryos in normal recipient heifers. A multidisciplinary approach is needed to properly assess the importance of the uterine milieu for embryonic development and to use the large number of new findings to solve long-standing issues regarding fertility.


2020 ◽  
Vol 26 ◽  
Author(s):  
Lakshmi A. Dave ◽  
Maria Hayes ◽  
Leticia Mora ◽  
Shane M. Rutherfurd ◽  
Carlos A. Montoya ◽  
...  

Background: Recent in silico and in vitro studies have shown that gastrointestinal endogenous proteins (GEP) are a source of bioactive peptides. To date, however, the presence of such peptides in the lumen of the digestive tract has not been demonstrated. Objective: We investigated the generation of GEP-derived bioactive peptides in the growing pig fed a protein-free diet. Methods: Stomach chyme (SC) and jejunal digesta (JD) fractions from 6 growing pigs (two sampling times) were assessed for their angiotensin-I-converting enzyme (ACE-I; EC 3.4.15.1) inhibition, and antioxidant activity using the 2,2- diphenyl-1-picrylhydrazyl (DPPH) inhibition, ferric reducing antioxidant power (FRAP) and microsomal lipid peroxidation (MLP) inhibition assays. Results: Two of the fractions prepared from JD samples inhibited ACE-I and DPPH by 81 (± 2.80)% and 94 (±0.66)%. SC fractions were found to inhibit MLP between 15-39 (±3.52-1.40)%. The study identified over 180 novel peptide sequences that were related to the determined bioactivities, including a porcine serum albumin-derived peptide (FAKTCVADE SAENCDKS), corresponding to f(7-23) of the human serum albumin peptide LVNEVTEFAKTCVADESAEN CDKSLHTLF that was previously identified from the digests of the latter GEP. Conclusions: This study provides the first in vivo evidence for GEP as a source of bioactive peptides. These new findings help advance our knowledge of the latent bioactive role of GEP-derived peptides in mammalian nutrition and health, and their potential pharmaceutical applications.


2008 ◽  
Vol 19 (5) ◽  
pp. 1912-1921 ◽  
Author(s):  
Hiroki Fujita ◽  
Kotaro Sugimoto ◽  
Shuichiro Inatomi ◽  
Toshihiro Maeda ◽  
Makoto Osanai ◽  
...  

Ca2+ is absorbed across intestinal epithelial monolayers via transcellular and paracellular pathways, and an active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is known to promote intestinal Ca2+ absorption. However, the molecules driving the paracellular Ca2+ absorption and its vitamin D dependency remain obscure. Because the tight junction proteins claudins are suggested to form paracellular channels for selective ions between neighboring cells, we hypothesized that specific intestinal claudins might facilitate paracellular Ca2+ transport and that expression of these claudins could be induced by 1α,25(OH)2D3. Herein, we show, by using RNA interference and overexpression strategies, that claudin-2 and claudin-12 contribute to Ca2+ absorption in intestinal epithelial cells. We also provide evidence showing that expression of claudins-2 and -12 is up-regulated in enterocytes in vitro and in vivo by 1α,25(OH)2D3 through the vitamin D receptor. These findings strongly suggest that claudin-2- and/or claudin-12-based tight junctions form paracellular Ca2+ channels in intestinal epithelia, and they highlight a novel mechanism behind vitamin D-dependent calcium homeostasis.


2020 ◽  
Vol 27 ◽  
Author(s):  
Tsun-Thai Chai ◽  
Kah-Yaw Ee ◽  
D. Thirumal Kumar ◽  
Fazilah Abdul Manan ◽  
Fai-Chu Wong

Abstract: Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.


Author(s):  
Jirawat Yongsawatdigul ◽  
Ali Hamzeh

Co-products from food processing are typically disposed or turned into low value animal feed. Proteinaceous co-products can be converted to bioactive peptides exerting health benefits, which can lead to development of nutraceuticals and functional foods. This is an effective means for valorization of these co-products. The release of encrypted peptides exhibits various bioactivities, including antihypertension, antioxidant, immunomodulatory activities among others, in vitro, and some activities have been demonstrated in vivo. Structure modification of bioactive peptides occurring under gastrointestinal digestion and cellular transport remains the important factor determining the health benefits of bioactive peptides. Understanding peptide transformation in gastrointestinal tract and in blood circulation before reaching the target organs would shed some lights on its bioavailability and subsequently ability to exert physiological impact. In this chapter, the potential health promoting properties of peptides encrypted in various sources of co-products will be reviewed based on evidence on in vitro, in vivo and clinical trial studies. Structural changes of bioactive peptides under physiological condition will also be discussed in relation to its bioactivities.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Sign in / Sign up

Export Citation Format

Share Document