scholarly journals Bioactive Peptides from Agriculture and Food Industry Co-Products: Peptide Structure and Health Benefits

Author(s):  
Jirawat Yongsawatdigul ◽  
Ali Hamzeh

Co-products from food processing are typically disposed or turned into low value animal feed. Proteinaceous co-products can be converted to bioactive peptides exerting health benefits, which can lead to development of nutraceuticals and functional foods. This is an effective means for valorization of these co-products. The release of encrypted peptides exhibits various bioactivities, including antihypertension, antioxidant, immunomodulatory activities among others, in vitro, and some activities have been demonstrated in vivo. Structure modification of bioactive peptides occurring under gastrointestinal digestion and cellular transport remains the important factor determining the health benefits of bioactive peptides. Understanding peptide transformation in gastrointestinal tract and in blood circulation before reaching the target organs would shed some lights on its bioavailability and subsequently ability to exert physiological impact. In this chapter, the potential health promoting properties of peptides encrypted in various sources of co-products will be reviewed based on evidence on in vitro, in vivo and clinical trial studies. Structural changes of bioactive peptides under physiological condition will also be discussed in relation to its bioactivities.

2012 ◽  
Vol 108 (S2) ◽  
pp. S149-S157 ◽  
Author(s):  
Kay J. Rutherfurd-Markwick

In addition to supplying essential nutrients, some food proteins can confer additional health benefits beyond nutrition. The presence of bioactive proteins and peptides in different foods is a factor not currently taken into consideration when assessing the dietary quality of food proteins. The range of described physiological benefits attributed to bioactive proteins and peptides is diverse. Multiple factors can potentially impact on the ability of a bioactive peptide or protein to elicit an effect. Although some food proteins act directly in their intact form to elicit their effects, generally it is peptides derived from digestion, hydrolysis or fermentation that are of most interest. The levels of bioactive peptides generated must be sufficient to elicit a response, but should not be so high as to be unsafe, thus causing negative effects. In addition, some peptides cause systemic effects and therefore must be absorbed, again in sufficient amounts to elicit their action. Many studies to date have been carried outin vitro; therefore it is important that further trials are conductedin vivoto assess efficacy, dose response and safety of the peptides, particularly if health related claims are to be made. Therefore, methods must be developed and standardised that enable the measurement of health benefits and also the level of bioactive peptides which are absorbed into the bloodstream. Once standardised, such methods may provide a new perspective and an additional mechanism for analysing protein quality which is currently not encompassed by the use of the protein digestibility-corrected amino acid score (PDCAAS).


Author(s):  
Mr. Chate Mahesh Madhukar

Abstract: Pomegranates fruits have innumerable health benefits and its implication in diseases cure have been widely recognized since ancient time. Moreover, pomegranate fruits, seeds and peels are intensively used in traditional medicine as a natural therapy. It contains numerous valuable ingredients such as flavonoids, ellagitannin, punicalagin, ellagic acid, vitamins and minerals. The principal constituents including punicalagins and ellagitannin are responsible for immeasurable health benefits due to its strong antioxidant activity. Additionally, constituents of pomegranate show health promoting effect through the modulation of physiological and biochemical pathways. Recent evidences suggested that pomegranates fruits, peels and seeds illustrate therapeutics implications in health management via inhibition of free radical effect and modulation of enzymes activity linked with diseases development and progression. In this review, we summarize the therapeutic role of pomegranate fruits, seeds and peels in the health managements based on in vitro and in vivo studies. Keywords: Pomegranates, Anti-oxidant, Anti-inflammatory effect, Heptoprotective effect, Neuroprotective effect and antimicrobial effects.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1820
Author(s):  
Hoang Chinh Nguyen ◽  
Chang-Chang Chen ◽  
Kuan-Hung Lin ◽  
Pi-Yu Chao ◽  
Hsin-Hung Lin ◽  
...  

Sweet potato (Ipomoea batatas) is one of the most important food crops worldwide and its leaves provide a dietary source of nutrients and various bioactive compounds. These constituents of sweet potato leaves (SPL) vary among varieties and play important roles in treating and preventing various diseases. Recently, more attentions in health-promoting benefits have led to several in vitro and in vivo investigations, as well as the identification and quantification of bioactive compounds in SPL. Among them, many new compounds have been reported as the first identified compounds from SPL with their dominant bioactivities. This review summarizes the current knowledge of the bioactive compositions of SPL and their health benefits. Since SPL serve as a potential source of micronutrients and functional compounds, they can be further developed as a sustainable crop for food and medicinal industries.


2020 ◽  
Vol 27 ◽  
Author(s):  
Tsun-Thai Chai ◽  
Kah-Yaw Ee ◽  
D. Thirumal Kumar ◽  
Fazilah Abdul Manan ◽  
Fai-Chu Wong

Abstract: Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4479 ◽  
Author(s):  
Lourdes Amigo ◽  
Blanca Hernández-Ledesma

Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1602
Author(s):  
Anna Elizarova ◽  
Alexey Sokolov ◽  
Valeria Kostevich ◽  
Ekaterina Kisseleva ◽  
Evgeny Zelenskiy ◽  
...  

As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


2004 ◽  
Vol 78 (16) ◽  
pp. 8732-8745 ◽  
Author(s):  
Amy L. Odegard ◽  
Kartik Chandran ◽  
Xing Zhang ◽  
John S. L. Parker ◽  
Timothy S. Baker ◽  
...  

ABSTRACT Several nonenveloped animal viruses possess an autolytic capsid protein that is cleaved as a maturation step during assembly to yield infectious virions. The 76-kDa major outer capsid protein μ1 of mammalian orthoreoviruses (reoviruses) is also thought to be autocatalytically cleaved, yielding the virion-associated fragments μ1N (4 kDa; myristoylated) and μ1C (72 kDa). In this study, we found that μ1 cleavage to yield μ1N and μ1C was not required for outer capsid assembly but contributed greatly to the infectivity of the assembled particles. Recoated particles containing mutant, cleavage-defective μ1 (asparagine → alanine substitution at amino acid 42) were competent for attachment; processing by exogenous proteases; structural changes in the outer capsid, including μ1 conformational change and σ1 release; and transcriptase activation but failed to mediate membrane permeabilization either in vitro (no hemolysis) or in vivo (no coentry of the ribonucleotoxin α-sarcin). In addition, after these particles were allowed to enter cells, the δ region of μ1 continued to colocalize with viral core proteins in punctate structures, indicating that both elements remained bound together in particles and/or trapped within the same subcellular compartments, consistent with a defect in membrane penetration. If membrane penetration activity was supplied in trans by a coinfecting genome-deficient particle, the recoated particles with cleavage-defective μ1 displayed much higher levels of infectivity. These findings led us to propose a new uncoating intermediate, at which particles are trapped in the absence of μ1N/μ1C cleavage. We additionally showed that this cleavage allowed the myristoylated, N-terminal μ1N fragment to be released from reovirus particles during entry-related uncoating, analogous to the myristoylated, N-terminal VP4 fragment of picornavirus capsid proteins. The results thus suggest that hydrophobic peptide release following capsid protein autocleavage is part of a general mechanism of membrane penetration shared by several diverse nonenveloped animal viruses.


Sign in / Sign up

Export Citation Format

Share Document