scholarly journals Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5390
Author(s):  
Nehal Gupta ◽  
Kshitij Verma ◽  
Sarath Nalla ◽  
Alok Kulshreshtha ◽  
Rajiv Lall ◽  
...  

Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals. Among various natural compounds, curcumin manifests as an antioxidant in normal cells that helps in the prevention of carcinogenesis. It also acts as a prooxidant in cancer cells and is associated with inducing apoptosis. Curcumin quenches free radicals, induces antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and upregulates antioxidative protein markers–Nrf2 and HO-1 that lead to the suppression of cellular oxidative stress. In cancer cells, curcumin aggressively increases ROS that results in DNA damage and subsequently cancer cell death. It also sensitizes drug-resistant cancer cells and increases the anticancer effects of chemotherapeutic drugs. Thus, curcumin shows beneficial effects in prevention, treatment and chemosensitization of cancer cells. In this review, we will discuss the dual role of free radicals as well as the chemopreventive and chemotherapeutic effects of curcumin and its analogues against cancer.

2021 ◽  
Vol 22 (2) ◽  
pp. 656
Author(s):  
Hantae Jo ◽  
Byungsun Cha ◽  
Haneul Kim ◽  
Sofia Brito ◽  
Byeong Mun Kwak ◽  
...  

Natural killer (NK) cells are lymphocytes that can directly destroy cancer cells. When NK cells are activated, CD56 and CD107a markers are able to recognize cancer cells and release perforin and granzyme B proteins that induce apoptosis in the targeted cells. In this study, we focused on the role of phytoncides in activating NK cells and promoting anticancer effects. We tested the effects of several phytoncide compounds on NK-92mi cells and demonstrated that α-pinene treatment exhibited higher anticancer effects, as observed by the increased levels of perforin, granzyme B, CD56 and CD107a. Furthermore, α-pinene treatment in NK-92mi cells increased NK cell cytotoxicity in two different cell lines, and immunoblot assays revealed that the ERK/AKT pathway is involved in NK cell cytotoxicity in response to phytoncides. Furthermore, CT-26 colon cancer cells were allografted subcutaneously into BALB/c mice, and α-pinene treatment then inhibited allografted tumor growth. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.


2005 ◽  
Vol 15 (11) ◽  
pp. 1685-1734 ◽  
Author(s):  
M. A. J. CHAPLAIN ◽  
G. LOLAS

The growth of solid tumours proceeds through two distinct phases: the avascular and the vascular phase. It is during the latter stage that the insidious process of cancer invasion of peritumoral tissue can and does take place. Vascular tumours grow rapidly allowing the cancer cells to establish a new colony in distant organs, a process that is known as metastasis. The progression from a single, primary tumour to multiple tumours in distant sites throughout the body is known as the metastatic cascade. This is a multistep process that first involves the over-expression by the cancer cells of proteolytic enzyme activity, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). uPA itself initiates the activation of an enzymatic cascade that primarily involves the activation of plasminogen and subsequently its matrix degrading protein plasmin. Degradation of the matrix then enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body. In this paper we consider a mathematical model of cancer cell invasion of tissue (extracellular matrix) which focuses on the role of the plasminogen activation system. The model consists of a system of reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, urokinase plasminogen activator (uPA), uPA inhibitors, plasmin and the host tissue. The focus of the modelling is on the spatio-temporal dynamics of the uPA system and how this influences the migratory properties of the cancer cells through random motility, chemotaxis and haptotaxis. The results obtained from numerical computations carried out on the model equations produce rich, dynamic heterogeneous spatio-temporal solutions and demonstrate the ability of rather simple models to produce complicated dynamics, all of which are associated with tumour heterogeneity and cancer cell progression and invasion.


2021 ◽  
Vol 22 ◽  
Author(s):  
Diana Duarte ◽  
Nuno Vale

: Antimalarial drugs from different classes have demonstrated anticancer effects in different types of cancer cells, but their complete mode of action in cancer remains unknown. Recently, several studies reported the important role of palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme, as the molecular target of chloroquine and its derivates in cancer. It was also found that PPT1 is overexpressed in different types of cancer, such as breast, colon, etc. Our group has found a synergistic interaction between antimalarial drugs, such as mefloquine, artesunate and chloroquine and antineoplastic drugs in breast cancer cells, but the mechanism of action was not determined. Here, we describe the importance of autophagy and lysosomal inhibitors in tumorigenesis and hypothesize that other antimalarial agents besides chloroquine could also interact with PPT1 and inhibit the mechanistic target of rapamycin (mTOR) signalling, an important pathway in cancer progression. We believe that PPT1 inhibition results in changes in the lysosomal metabolism that result in less accumulation of antineoplastic drugs in lysosomes, which increases the bioavailability of the antineoplastic agents. Taken together, these mechanisms help to explain the synergism of antimalarial and antineoplastic agents in cancer cells.


Pancreas ◽  
2002 ◽  
Vol 24 (2) ◽  
pp. 161-168 ◽  
Author(s):  
William J. Thomas ◽  
Deborah L. Thomas ◽  
Joseph A. Knezetic ◽  
Thomas E. Adrian

Author(s):  
Ziyaeva E.R. ◽  

The article is devoted to a review of the topical problem of our time “Microbiocenosis of open cavities of the body and its role in the occurrence of many diseases of the human body ”. It has now been proven that the normal microflora of the human body plays a huge role in the normal course of life processes. The slightest violation of the composition of microorganisms leads to various irreversible defects in the normal course of human life, which are associated with the functions of the microbiocenosis and which no medicine can replace. The concept of microbiocenosis appeared in the 70s of the last century, although the first stone in this direction was put by Louis Pasteur, who proved the role of a microorganism in the process of fermentation and digestion. Many scientists contributed to the leap forward development of this science, which was forced due to errors in the use of antibiotics and chemotherapeutic drugs. Yes, indeed, the path of development of the science of biocenoses is closely related to the misuse of drugs, which often leads to dysbiosis. In addition, environmental pollution due to the uncontrollable development of urbanization plays a huge role in the development of dysbiotic processes.Therefore, with the aim of acquainting readers with the concept of biocenoses, certain pathways of pathogenetic links in the development of various diseases in violation of the composition of the normal microflora of the human body, we set ourselves the task of conducting a partial review of the achievement of the science of biocenoses of open cavities of the body.


2020 ◽  
Vol 9 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Fatemeh Jamshidi-kia ◽  
Joko Priyanto Wibowo ◽  
Mostafa Elachouri ◽  
Rohollah Masumi ◽  
Alizamen Salehifard-Jouneghani ◽  
...  

Free radicals are constructed by natural physiological activities in the human cells as well as in the environment. They may be produced as a result of diet, smoking, exercise, inflammation, exposure to sunlight, air pollutants, stress, alcohol and drugs. Imbalanced redox status may lead to cellular oxidative stress, which can damage the cells of the body, resulting in an incidence of various diseases. If the endogenous antioxidants do not stop the production of reactive metabolites, they will be needed to bring about a balance in redox status. Natural antioxidants, for example plants, play an important part in this context. This paper seeks to report the available evidence about oxidative stress and the application of plants as antioxidant agents to fight free radicals in the human body. For this purpose, to better understand oxidative stress, the principles of free radical production, the role of free radicals in diseases, antioxidant defense mechanisms, and the role of herbs and diet in oxidative stress are discussed.


Sign in / Sign up

Export Citation Format

Share Document