scholarly journals Analytical, Preparative, and Industrial-Scale Separation of Substances by Methods of Countercurrent Liquid-Liquid Chromatography

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6020
Author(s):  
Artak A. Kostanyan ◽  
Andrey A. Voshkin ◽  
Vera V. Belova

Countercurrent liquid-liquid chromatographic techniques (CCC), similar to solvent extraction, are based on the different distribution of compounds between two immiscible liquids and have been most widely used in natural product separations. Due to its high load capacity, low solvent consumption, the diversity of separation methods, and easy scale-up, CCC provides an attractive tool to obtain pure compounds in the analytical, preparative, and industrial-scale separations. This review focuses on the steady-state and non-steady-state CCC separations ranging from conventional CCC to more novel methods such as different modifications of dual mode, closed-loop recycling, and closed-loop recycling dual modes. The design and modeling of various embodiments of CCC separation processes have been described.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Qi Yang ◽  
Wenli Lin ◽  
Jiawei Xu ◽  
Nan Guo ◽  
Jiachen Zhao ◽  
...  

Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.


2020 ◽  
Vol 20 (9) ◽  
pp. 768-778
Author(s):  
Sanjay Sharma ◽  
Komal S. Aware ◽  
Ketan Hatware ◽  
Kiran Patil

This review refers to the all-inclusive details of Lorcaserin Hydrochloride on comprehensive information about the synthesis, analytical methods, pharmacodynamics, pharmacokinetics, drug interactions and adverse effects. Lorcaserin Hydrochloride is chemically (R)-8-Chloro-1-methyl-2,3,4,5- tetrahydro-1H-3-benzazepine hydrochloride. Lorcaserin HCl is a novel, synthetic, centrally-acting selective serotonin C (5-HT2c) receptor, l agonist, which results in increased satiety and decreased food consumption in patients. Headache, dizziness and nausea are the most common side effects associated with this drug. Lorcaserin HCl has two major metabolites, one conjugated with glucuronide called N-carbamoyl glucuronide which is excreted in urine and the second Lorcaserin N-sulfamate, which is circulated in the blood. Lorcaserin HCl is synthesized using four different schemes of which a six-step method that resulted in 92.3% yield with 99.8% of purity is employed for scale-up production. It is analyzed quantitatively in the plasma and brain tissue matrix of rats by Ultra Performance Liquid chromatographic (UPLC) method using MS-MS (Mass Spectrometric) detection.


2014 ◽  
Vol 118 (1199) ◽  
pp. 53-64
Author(s):  
B. Giublin ◽  
J. A. Vieira ◽  
T. G. Vieira ◽  
L. G. Trabasso ◽  
C. A. Martins

Abstract ITA and EMBRAER are currently executing the research project Automation of Aircraft Structural Assembly (AASA) whose goal is to implement a robotic cell for automating the riveting process of aeronautical structures. The proposal described herein complements the AASA project, adds other manufacturing processes, namely sanding and polishing of aircraft surfaces. To implement the additional processes AASA project resources and facilities were used (robots and metrology systems) and devices designed and /or acquired to allow sharing of these resources. Among these, an Automatic Tooling Support for AERonautics structures (ATS_AER) was designed and built; also, a robot tool changer with high load capacity was acquired. The outcome of this research project is the evaluation of the feasibility of automating the processes of sanding and polishing metal surfaces in the aircraft manufacture using robots. The operating method adopted for surface treatment employed the ‘U’ type trajectory optimised to be run by a KUKA robot KR 500. The sanding process has been applied to aluminum metal sheet specimen sized 2•18ft2 (0•20m2) and used commercial 600 and 800 sandpaper. The automated sanding process yielded an average value of RA 0•48 ± 0•08 which is 25% more efficient when compared to the traditional, manual process whose average value of RA is 0•75 ± 0•51.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim ◽  
Myongsok Song

Abstract This work presents a novel design of a hydrostatic thrust foil bearing (HSTFB) with an outer diameter of 154mm along with simulation and test results up to specific load capacity of 223kPa (32.3psi). The HSTFB incorporates a high pressure air/gas injection to the thrust foil bearing with a uniform clearance. This bearing has high load capacity, low power loss, and no friction/wear during startup and shutdown. In addition, the HSTFB allows for bidirectional operation. The paper also presents an advanced simulation model which adopts the exact locations of a tangentially arranged bumps to a cylindrical two-dimensional plate model of the top foil. This method predicts top foil deflection with better accuracy than the traditional independent elastic foundation model which distributes the bump locations over the nodal points in the cylindrical coordinates, and with less computational resource than the finite element method applied to the entire bump/top foils. The presented HSTFB, was designed for Organic Rankine Cycle (ORC) generators, but its performance was predicted and measured using air in this paper. The bearing static performance is compared analytically against the rigid counterpart, and presented at different supply pressures, speeds, and minimum film thicknesses. Experimental verification is conducted at 10, 15 and 20krpm. The measured load capacity and frictional loss agree well with the prediction. The measured film thickness also agrees with the prediction after the structural deflection of the thrust runner disc is compensated. Overall, the novel HSTFB demonstrates an excellent static performance and shows good potential for adoption to the intended ORC generators and other large oil-free turbomachines.


Author(s):  
Jiwen Fang ◽  
Zhili Long ◽  
Lufan Zhang

This paper presents macro-micro dual-drive stages using the hybrid actuators composed of voice coil motor (VCM) and piezoelectric actuator (PZT actuator). The macro stage driven by voice coil motor can achieve large travel range and coarse positioning. The micro stage with an embedded flexure hinges mechanism, actuated by the PZT actuator, can realize short range but high precision positioning. To gain precise performance, the dynamic modes of macro stage and micro stage are equivalent to mass-damping-spring system in this research. According to theoretical analysis, the output displacement of micro stage is proportional to the extension of the PZT Actuator. The linear relationship will be used to the motion control of micro stage. To realize perfect performance, the variable gain PID controller is designed to control the macro stage. In order to prevent saturation and damage of PZT actuator, dual switching control, positioning error threshold and small vibration displacement, are applied to the switching control. Beyond the micro stage range, the micro stage must be kept in its equilibrium position while the VCM instead reaches a long travel. The PZT actuator controller is used to compensate for position error after switching control. When the error is less than a set thres hold value, the error signal is added into the micro control loop. So the macro-micro dual-drive stages are working together to reduce the positioning error. The relationship between PZT actuator of closed loop and input voltage is linear by theoretical analysis and experiment test. So the micro stage uses an open servo loop structure, but the PZT actuator is controlled with PI controller in local closed loop in order to eliminate the nonlinear of PZT. The experimental system used in this study is single-axis dual-driving stages. Turbo PMAC PCI-Lite is the core of the whole system and executes PLC programs with motion programs. Experiments show that the steady state error of dual-drive stage is nano level. The steady state error of dual-drive stage can be improved. So dual-drive stages can increase the positioning accuracy of the whole system and the performance is superior to the single VCM stage.


2018 ◽  
Vol 57 (49) ◽  
pp. 16795-16808
Author(s):  
Julián Cabrera-Ruiz ◽  
César Ramírez-Márquez ◽  
Shinji Hasebe ◽  
Salvador Hernández ◽  
J. Rafael Alcántara Avila

Sign in / Sign up

Export Citation Format

Share Document