scholarly journals Dialkylboryl-Substituted Cyclic Disilenes Synthesized by Desilylation-Borylation of Trimethylsilyl-Substituted Disilenes

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1632
Author(s):  
Kaho Tanaka ◽  
Naohiko Akasaka ◽  
Tomoyuki Kosai ◽  
Shunya Honda ◽  
Yuya Ushijima ◽  
...  

π-Electron systems of silicon have attracted attention because of their narrow HOMO-LUMO gap and high reactivity, but the structural diversity remains limited. Herein, new dialkylboryl-substituted disilenes were synthesized by the selective desilylation-borylation of the corresponding trimethylsilyl-substituted disilenes. The dialkylboryl-substituted disilenes were fully characterized by a combination of NMR spectroscopy, MS spectrometry, single-crystal X-ray diffraction analysis, and theoretical calculations. The longest-wavelength absorption bands of boryldisilenes were bathochromically shifted compared to the corresponding silyl-substituted disilenes, indicating a substantial conjugation between π(Si=Si) and vacant 2p(B) orbitals. In the presence of 4-(dimethylamino)pyridine (DMAP), the dialkylboryl groups in the boryl-substituted disilenes were easily converted to trimethylsilyl groups, suggesting the dialkylboryl-substituted disilenes in the presence of a base serve as the surrogates of disilenyl anions (disilenides).

2012 ◽  
Vol 67 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Bihai Tong ◽  
Jiayan Qiang ◽  
Qunbo Mei ◽  
Hengshan Wang ◽  
Qianfeng Zhang ◽  
...  

Four cationic Ir(III) complexes, [Ir(dpq)2(bpy)]PF6 (1), [Ir(dpq)2(phen)]PF6 (2), [Ir(tfapq)2- (bpy)]PF6 (3), and [Ir(tfapq)2(phen)]PF6 (4) (dpqH = 2,4-diphenylquinoline, tfapqH = 2-(4ʹ-trifluoroacetylphenyl)- 4-phenylquinoline, bpy = 2,2ʹ-bipyridine, phen = 1,10-phenanthroline) have been synthesized and fully characterized. The structure of 4 was also confirmed by single-crystal X-ray diffraction. The electron-acceptor character of the trifluoroacetyl unit leads to a reduced HOMO-LUMO gap and consequently a red-shift of the UV/Vis absorption and luminescence spectra. The solvophobic character of the trifluoroacetyl unit gives rise to a molecule assembly in solution.


1994 ◽  
Vol 368 ◽  
Author(s):  
M. Malaty ◽  
D. Singh ◽  
R. Schaeffer ◽  
S. Jansen ◽  
S. Lawrence

ABSTRACTStudies of the mixed-metal interface in metal impregnated alumina have indicated the possibility of much metal-metal and metal-substrate interaction. Studies were carried out on NiCu/Al2O3 system which was evaluated to develop a better understanding of the forces that drive modification of the catalytic selectivity of Ni in the presence of Cu. Electron Paramagnetic Resonance (EPR), Powder X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD) and theoretical calculations were carried out on this bimetallic system, using Ni,Ag/Al2O3 as a reference as Ni shows negligible electron perturbation on co-adsorbance with Ag onto alumina. XRD results indicate that gross modification of the electronic fields of Ni and Cu are due to direct coupling and intercalation into the alumina matrix. As a result of this phenomena, these materials may form a good base for the development of novel ceramics based on mixed-metal interactions where the intermetallic perturbations are driven by the substrate effects.


Author(s):  
Mateusz Gołdyn ◽  
Anna Komasa ◽  
Mateusz Pawlaczyk ◽  
Aneta Lewandowska ◽  
Elżbieta Bartoszak-Adamska

The study of various forms of pharmaceutical substances with specific physicochemical properties suitable for putting them on the market is one of the elements of research in the pharmaceutical industry. A large proportion of active pharmaceutical ingredients (APIs) occur in the salt form. The use of an acidic coformer with a given structure and a suitable pK a value towards purine alkaloids containing a basic imidazole N atom can lead to salt formation. In this work, 2,6-dihydroxybenzoic acid (26DHBA) was used for cocrystallization of theobromine (TBR) and caffeine (CAF). Two novel salts, namely, theobrominium 2,6-dihydroxybenzoate, C7H9N4O2 +·C7H5O4 − (I), and caffeinium 2,6-dihydroxybenzoate, C8H11N4O2 +·C7H5O4 − (II), were synthesized. Both salts were obtained independently by slow evaporation from solution, by neat grinding and also by microwave-assisted slurry cocrystallization. Powder X-ray diffraction measurements proved the formation of the new substances. Single-crystal X-ray diffraction studies confirmed proton transfer between the given alkaloid and 26DHBA, and the formation of N—H...O hydrogen bonds in both I and II. Unlike the caffeine cations in II, the theobromine cations in I are paired by noncovalent N—H...O=C interactions and a cyclic array is observed. As expected, the two hydroxy groups in the 26DHBA anion in both salts are involved in two intramolecular O—H...O hydrogen bonds. C—H...O and π–π interactions further stabilize the crystal structures of both compounds. Steady-state UV–Vis spectroscopy showed changes in the water solubility of xanthines after ionizable complex formation. The obtained salts I and II were also characterized by theoretical calculations, Fourier-transform IR spectroscopy (FT–IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis.


2022 ◽  
Vol 1049 ◽  
pp. 218-223
Author(s):  
Aleksandr S. Kazachenko ◽  
Yuriy N. Malyar ◽  
Anna S. Kazachenko

Sulfated derivatives of polysaccharides have anticoagulant, hypolipedimic and other biological activity. In this work, a complex mixed ester of galactomannan, its sulfate-citrate, was obtained for the first time. The introduction of citrate and sulfate groups was proved by FTIR spectroscopy by the appearance of corresponding absorption bands. It was shown by X-ray diffraction that the introduction of the citrate group leads to the amorphization of the galactomannan structure.


2000 ◽  
Vol 658 ◽  
Author(s):  
A. Manthiram ◽  
R. V. Chebiam ◽  
F. Prado

ABSTRACTLayered Co1-yNiyO2-δ oxides with 0≤y≤1 have been synthesized by chemically extracting lithium from LiNi1-yCoyO2 with NO2PF6 at ambient temperature. The samples have been characterized by X-ray diffraction, wet-chemical analyses, infrared spectroscopy, and magnetic susceptibility measurements. While NiO2-δ retains the initial O3 (CdCl2 structure) layer structure of LiNiO2, CoO2-δ consists of a mixture of P3 and O1 (CdI2 structure) phases that are formed by a sliding of the oxide ions in the initial O3 structure. CoO2-δ and NiO2-δ have oxygen contents of, respectively, 1.67 and 1.95 and the oxygen content increases with increasing Ni content, y, in Co1-yNiyO2-δ. While CoO2-δ exhibits metallic conductivity as revealed by theabsence of absorption bands in the infrared spectrum, NiO2-δ exhibits semiconducting behavior due to a completely filled t2g band. Magnetic data reveal a transition from antiferromagnetic to ferromagnetic correlations as the Ni content in Co1-yNiyO2-δ increases.


2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650347
Author(s):  
Amarjeet ◽  
Vinod Kumar

[Formula: see text] ([Formula: see text] = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700[Formula: see text]C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz–5 MHz. Temperature dependence of the dielectric constant of [Formula: see text] was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz–5 MHz. It was found that the electrical conductivity decreases with increasing Cu[Formula: see text] ion content while it increases with the increase in temperature.


2021 ◽  
Author(s):  
Raji P ◽  
K Balachandra Kumar

Abstract Ti - doped ZnO (TixZn1-xO x= 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co - precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV-Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 ​nm to 29 ​nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples.PL spectra showed a near band edge emission and visible emission.Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.


2019 ◽  
Vol 80 (6) ◽  
pp. 1076-1084 ◽  
Author(s):  
Hualin Chen ◽  
Huajun Xie ◽  
Jiangmin Zhou ◽  
Yueliang Tao ◽  
Yongpu Zhang ◽  
...  

Abstract In this study, starch-stabilized nanoscale zero-valent iron (S-nZVI) was produced using the liquid-phase reduction method. It was used to remove chromium from wastewater, and compared to a commercial nanoscale zero-valent iron (C-nZVI). Both nZVIs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results showed that S-nZVI had smaller particles and a more uniform particle size distribution than C-nZVI. Both nZVIs showed a core-shell structure with the Fe0 core prominently surrounded by less iron oxides of Fe2+ and Fe3+. The optimal application methods to remove Cr(VI) from wastewater were also explored. The results showed that both the removal efficiencies of total Cr and Cr(VI) increased with increases in the addition of nZVIs, while the removal efficiencies of total Cr and Cr(VI) by S-nZVI were clearly higher than that of C-nZVI, especially in a low pH range (pH = 1.0–6.0). This research indicated that starch-stabilized nanoscale zero-valent iron is a valuable material to remove heavy metals from wastewater due to its stability and high reactivity.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 600
Author(s):  
Werwein ◽  
Hansen ◽  
Kohlmann

Many Zintl phases exhibiting a CrB type structure form hydrides. Systematic studies of AeTtHx (Ae = Ca, Sr, Ba; Tt = Si, Ge, Sn), LnTtHx (Ln = La, Nd; Tt = Si, Ge, Sn), and LnGaHx (Ln = Nd, Gd) showed the vast structural diversity of these systems. Hydrogenation reactions on REGa (RE = Y, La, Tm) and RESi (RE = Y, Er, Tm) were performed in steel autoclaves under hydrogen pressure up to 5 MPa and temperatures up to 773 K. The products were analyzed by X-ray and neutron powder diffraction. RESi (RE = Y, Er, Tm) form hydrides in the C-LaGeD type. LaGaD1.66 is isostructural to NdGaD1.66 and shows similar electronic features. Ga-D distances (1.987(13) Å and 2.396(9) Å) are considerably longer than in polyanionic hydrides and not indicative of covalent bonding. In TmGaD0.93(2) with a distorted CrB type structure deuterium atoms exclusively occupy tetrahedral voids. Theoretical calculations on density functional theory (DFT) level confirm experimental results and suggest metallic properties for the hydrides.


2020 ◽  
Vol 76 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Hongya Li ◽  
Biao Yan ◽  
Haixia Ma ◽  
Zhiyong Sun ◽  
Yajun Ma ◽  
...  

Bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM, C5H8N8) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group Fdd2 (orthorhombic) with Z = 8. The structure of BATZM can be described as a V-shaped molecule with reasonable chemical geometry and no disorder. The specific molar heat capacity (Cp,m ) of BATZM was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 211.19 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m , HT – H 298.15K and ST – S 298.15K of BATZM are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM were estimated using the nitrogen equivalent equation according to the experimental density; BATZM has a higher detonation velocity (7954.87 ± 3.29 m s−1) and detonation pressure (25.72 ± 0.03 GPa) than TNT.


Sign in / Sign up

Export Citation Format

Share Document