scholarly journals The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5343
Author(s):  
Pan Jia ◽  
Xinyi Du ◽  
Ruiqi Chen ◽  
Jinming Zhou ◽  
Marco Agostini ◽  
...  

Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO–CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea–river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO–CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination.

2018 ◽  
Vol 20 (10) ◽  
pp. 7295-7302 ◽  
Author(s):  
Rui Long ◽  
Zhengfei Kuang ◽  
Zhichun Liu ◽  
Wei Liu

To evaluate the possibility of nano-fluidic reverse electrodialysis (RED) for salinity gradient energy harvesting, we consider the behavior of ion transportation in a bilayer cylindrical nanochannel with different sized nanopores connecting two reservoirs at different NaCl concentrations.


2021 ◽  
Vol 9 (1) ◽  
pp. 244-253
Author(s):  
Zhi Yi Leong ◽  
Zhaojun Han ◽  
Guangzhao Wang ◽  
Dong-Sheng Li ◽  
Shengyuan A. Yang ◽  
...  

Precise and selective separation of ions using two-dimensional (2D) laminar membranes is a budding research field with potential applications in water treatment, desalination, sensing, biomimicry and energy storage.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3638 ◽  
Author(s):  
Maurizio Donarelli ◽  
Luca Ottaviano

After the synthesis of graphene, in the first year of this century, a wide research field on two-dimensional materials opens. 2D materials are characterized by an intrinsic high surface to volume ratio, due to their heights of few atoms, and, differently from graphene, which is a semimetal with zero or near zero bandgap, they usually have a semiconductive nature. These two characteristics make them promising candidate for a new generation of gas sensing devices. Graphene oxide, being an intermediate product of graphene fabrication, has been the first graphene-like material studied and used to detect target gases, followed by MoS2, in the first years of 2010s. Along with MoS2, which is now experiencing a new birth, after its use as a lubricant, other sulfides and selenides (like WS2, WSe2, MoSe2, etc.) have been used for the fabrication of nanoelectronic devices and for gas sensing applications. All these materials show a bandgap, tunable with the number of layers. On the other hand, 2D materials constituted by one atomic species have been synthetized, like phosphorene (one layer of black phosphorous), germanene (one atom thick layer of germanium) and silicone (one atom thick layer of silicon). In this paper, a comprehensive review of 2D materials-based gas sensor is reported, mainly focused on the recent developments of graphene oxide, exfoliated MoS2 and WS2 and phosphorene, for gas detection applications. We will report on their use as sensitive materials for conductometric, capacitive and optical gas sensors, the state of the art and future perspectives.


2019 ◽  
Vol 10 ◽  
pp. 1316-1323 ◽  
Author(s):  
Kai Xiao ◽  
Baris Kumru ◽  
Lu Chen ◽  
Lei Jiang ◽  
Bernhard V K J Schmidt ◽  
...  

A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems.


Desalination ◽  
2022 ◽  
Vol 525 ◽  
pp. 115485
Author(s):  
Yanmei Jiao ◽  
Linhui Song ◽  
Cunlu Zhao ◽  
Yi An ◽  
Weiyu Lu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijun Liu ◽  
Qingming Ma ◽  
Jie Cao ◽  
Yang Gao ◽  
Shangcong Han ◽  
...  

Abstract Background In the last decade, graphene oxide-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted more and more attention in the field of biomedicine. Due to the versatile surface functionalization, ultra-high surface area, and excellent biocompatibility of graphene oxide-based nanomaterials, which hold better promise for potential applications than among other nanomaterials in biomedical fields including drug/gene delivery, biomolecules detection, tissue engineering, especially in cancer treatment. Results Here, we review the recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. A comprehensive and in-depth depiction of unique property of graphene oxide-based multifunctional nanomaterials is first interpreted, with particular descriptions about the suitability for applying in cancer therapy. Afterward, recently emerging representative applications of graphene oxide-based multifunctional nanomaterials in antitumor therapy, including as an ideal carrier for drugs/genes, phototherapy, and bioimaging, are systematically summarized. Then, the biosafety of the graphene oxide-based multifunctional nanomaterials is reviewed. Conclusions Finally, the conclusions and perspectives on further advancing the graphene oxide-based multifunctional nanomaterials toward potential and versatile development for fundamental researches and nanomedicine are proposed. Graphic abstract


2020 ◽  
Vol 49 (9) ◽  
pp. 1081-1083
Author(s):  
Yusuke Yamada ◽  
Yuki Kitazumi ◽  
Kenji Kano ◽  
Osamu Shirai

Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


Sign in / Sign up

Export Citation Format

Share Document