scholarly journals Nanoplastic Labelling with Metal Probes: Analytical Strategies for Their Sensitive Detection and Quantification by ICP Mass Spectrometry

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7093
Author(s):  
Lucile Marigliano ◽  
Bruno Grassl ◽  
Joanna Szpunar ◽  
Stéphanie Reynaud ◽  
Javier Jiménez-Lamana

The detection and quantification of nanoplastics in aquatic environments is one of the major challenges in environmental and analytical research nowadays. The use of common analytical techniques for this purpose is not only hampered by the size of nanoplastics, but also because they are mainly made of carbon. In addition, the expected concentrations in environmental samples are below the detection limit of the majority of analytical techniques. In this context, the great detection capabilities of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in its Single Particle mode (SP-ICP-MS) have made of this technique a good candidate for the analysis of nanoplastics. Since the monitoring of carbon by ICP-MS faces several difficulties, the use of metal tags, taking advantage of the great potential of nanoplastics to adsorb chemical compounds, has been proposed as an alternative. In this perspectives paper, three different strategies for the analysis of polystyrene (PS) nanoplastics by SP-ICP-MS based on the use of metals species (ions, hydrophobic organometallic compound, and nanoparticles) as tags are presented and discussed. Advantages and disadvantages of each strategy, which rely on the labelling process, are highlighted. The metal nanoparticles labelling strategy is shown as a promising tool for the detection and quantification of nanoplastics in aqueous matrices by SP-ICP-MS.

2014 ◽  
Vol 228 (4-5) ◽  
Author(s):  
Axel Pramann ◽  
Olaf Rienitz ◽  
Janine Noordmann ◽  
Bernd Güttler ◽  
Detlef Schiel

AbstractHigh resolution multicollector inductively coupled plasma mass spectrometry (HR-MC-ICP-MS) was applied for the determination of the isotopic composition and molar mass of a silicon crystal material (“Si28”) highly enriched in the


2018 ◽  
Vol 33 (2) ◽  
pp. 274-282 ◽  
Author(s):  
Sanwang Li ◽  
Balázs Klencsár ◽  
Lieve Balcaen ◽  
Filip Cuyckens ◽  
Frederic Lynen ◽  
...  

Novel analytical strategies for investigating drug ADME (absorption, distribution, metabolism and excretion).


2020 ◽  
Vol 92 (17) ◽  
pp. 11664-11672
Author(s):  
Javier Jiménez-Lamana ◽  
Lucile Marigliano ◽  
Joachim Allouche ◽  
Bruno Grassl ◽  
Joanna Szpunar ◽  
...  

Química Nova ◽  
2021 ◽  
Author(s):  
Fabio Bazilio ◽  
Cristiane Silva ◽  
Lísia Santos ◽  
Santos Vicentini ◽  
Silvana Jacob ◽  
...  

DETECTION AND QUANTIFICATION OF SILVER NANOPARTICLES BY spICP-MS. The growing interest in nanotechnology has led to an increase in the production and application of nanoparticles worldwide. Due to the unique functional properties of nanoparticles, these materials are being used by many industries, including the agricultural and food sectors. Among the commercially available nanomaterials, it is possible to highlight those produced with silver nanoparticles. One of the most promising techniques for the analysis of metallic nanoparticles is the Inductively coupled plasma mass spectrometry (ICP-MS) performed in single particle mode (spICP-MS). However, the use of the technique in the detection and measurement of nanoparticles requires that the equipment be operated differently than when used to analyze dissolved metal solutions. Thus, this article presents the use of the spICP-MS technique for the measurement and quantification of nanoparticles, as well as their validation. The method proved to be adequate for the purpose, presenting a satisfactory result for the selectivity test and recovery of 83.7 (40 nm) and 77.6% (80 nm). The detection limits, determined for the most frequent size, dissolved silver concentration and particle concentration, were 17.5 nm, 0.736 ng mL-1,146 particles mL-1, respectively. Thus, the results obtained indicated the possibility of using the technique to determine the size and concentration of silver nanoparticles.


2019 ◽  
Vol 36 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Carlos Ortega-Obregón ◽  
Fanis Abdullin ◽  
Luigi Solari ◽  
Peter Schaaf ◽  
Gabriela Solís-Pichardo

Apatite is the most common phosphate mineral in the Earth’s crust and can be found in practically all magmatic and metamorphic rocks, as well as in ancient and recent sediments and in certain ore deposits. Its effective closure temperature of 450–550 °C for the U-Pb system makes apatite an important natural medium-temperature thermochronometer that can be dated by both laser ablation inductively coupled plasma mass spectrometry (LA–ICP-MS) and isotope dilution thermal ionization mass spectrometry (ID–TIMS) techniques. Due to its low U content, coupled with high Pb contents incorporated during crystallization (also called common lead), apatite U-Pb dating is analytically challenging, and requires robust analytical protocols to achieve reliable ages. In this experimental study we obtained apatite U-Pb ages from six rock samples employing LA–ICP-MS (at Laboratorio de Estudios Isotópicos, Centro de Geociencias, UNAM), while one sample was also dated by ID–TIMS (at Laboratorio Universitario de Geoquímica Isotópica, UNAM). These samples have igneous emplacement or metamorphic ages broadly ranging from the Neoproterozoic to the Paleocene. The obtained apatite U-Pb ages agree well with other radioisotopic data (U-Pb on zircon and K-Ar or Ar-Ar on micas and hornblende) available for the same rock samples tested, or for the same geological units studied. These apatite U-Pb results, obtained for the first time at two main Mexican geochronology laboratories, are precise enough to be geologically meaningful and usually represent the cooling ages; though, in some cases they may also indicate the crystallization or the metamorphic age. Some advantages and disadvantages of LA–ICP-MS- and ID–TIMS-based methodologies were observed and outlined. Our results validate the analytical procedures used and will serve as an important trigger towards the development or improvement of medium-temperature thermochronology techniques in Mexico.


2017 ◽  
Vol 32 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Kentaro Hattori ◽  
Shuhei Sakata ◽  
Michitaka Tanaka ◽  
Yuji Orihashi ◽  
Takafumi Hirata

Precise zircon U–Pb age determinations have been made on Plešovice zircon using laser ablation-multiple ion counting-inductively coupled plasma-mass spectrometry (LA-MIC-ICP-MS).


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document