scholarly journals Rapid Bacterial Recognition over a Wide pH Range by Boronic Acid-Based Ditopic Dendrimer Probes for Gram-Positive Bacteria

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 256
Author(s):  
Ayame Mikagi ◽  
Koichi Manita ◽  
Asuka Yoyasu ◽  
Yuji Tsuchido ◽  
Nobuyuki Kanzawa ◽  
...  

We have developed a convenient and selective method for the detection of Gram-positive bacteria using a ditopic poly(amidoamine) (PAMAM) dendrimer probe. The dendrimer that was modified with dipicolylamine (dpa) and phenylboronic acid groups showed selectivity toward Staphylococcus aureus. The ditopic dendrimer system had higher sensitivity and better pH tolerance than the monotopic PAMAM dendrimer probe. We also investigated the mechanisms of various ditopic PAMAM dendrimer probes and found that the selectivity toward Gram-positive bacteria was dependent on a variety of interactions. Supramolecular interactions, such as electrostatic interaction and hydrophobic interaction, per se, did not contribute to the bacterial recognition ability, nor did they improve the selectivity of the ditopic dendrimer system. In contrast, the ditopic PAMAM dendrimer probe that had a phosphate-sensing dpa group and formed a chelate with metal ions showed improved selectivity toward S. aureus. The results suggested that the targeted ditopic PAMAM dendrimer probe showed selectivity toward Gram-positive bacteria. This study is expected to contribute to the elucidation of the interaction between synthetic molecules and bacterial surface. Moreover, our novel method showed potential for the rapid and species-specific recognition of various bacteria.

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Shayma Thyab Gddoa Al-sahlany ◽  
Ammar Altemimi ◽  
Alaa Al-Manhel ◽  
Alaa Niamah ◽  
Naoufal Lakhssassi ◽  
...  

A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomyces cerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.


2016 ◽  
Vol 44 (6) ◽  
pp. 1659-1666 ◽  
Author(s):  
Kurt H. Piepenbrink ◽  
Eric J. Sundberg

Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.


2015 ◽  
Vol 83 (10) ◽  
pp. 4028-4041 ◽  
Author(s):  
Laty A. Cahoon ◽  
Nancy E. Freitag

The Gram-positive bacteriumListeria monocytogenesis a facultative intracellular pathogen that relies on the regulated secretion and activity of a variety of proteins that sustain life within diverse environments. PrsA2 has recently been identified as a secreted peptidyl-prolylcis/transisomerase and chaperone that is dispensable for bacterial growth in broth culture but essential forL. monocytogenesvirulence. Following host infection, PrsA2 contributes to the proper folding and activity of secreted proteins that are required for bacterial replication within the host cytosol and for bacterial spread to adjacent cells. PrsA2 is one member of a family of Gram-positive secretion chaperones that appear to play important roles in bacterial physiology; however, it is not known how these proteins recognize their substrate proteins or the degree to which their function is conserved across diverse Gram-positive species. We therefore examined PrsA proteins encoded by a variety of Gram-positive bacteria for functional complementation ofL. monocytogenesmutants lackingprsA2. PrsA homologues encoded byBacillus subtilis,Streptococcus pyogenes,Streptococcus pneumoniae,Streptococcus mutans,Staphylococcus aureus, andLactococcus lactiswere examined for functional complementation of a variety ofL. monocytogenesPrsA2-associated phenotypes central toL. monocytogenespathogenesis and bacterial cell physiology. Our results indicate that while selected aspects of PrsA2 function are broadly conserved among diverse Gram-positive bacteria, PrsA2 exhibits unique specificity forL. monocytogenestarget proteins required for pathogenesis. TheL. monocytogenesPrsA2 chaperone thus appears evolutionarily optimized for virulence factor secretion within the host cell cytosol while still maintaining aspects of activity relevant to more general features of Gram-positive protein translocation.


2011 ◽  
Vol 77 (8) ◽  
pp. 2755-2762 ◽  
Author(s):  
Marcel H. Tempelaars ◽  
Susana Rodrigues ◽  
Tjakko Abee

ABSTRACTCereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of theBacillus cereusgroup, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced byStreptomycesspp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, includingStaphylococcus aureus,Listeria innocua,Listeria monocytogenes,Bacillus subtilis, andBacillus cereusATCC 10987. Notably,B. cereusstrain ATCC 14579 and the emeticB. cereusstrains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC2(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emeticB. cereusis discussed.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Irina Sadovskaya ◽  
Evgeny Vinogradov ◽  
Pascal Courtin ◽  
Julija Armalyte ◽  
Mickael Meyrand ◽  
...  

ABSTRACT Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis, a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA, encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.


2002 ◽  
Vol 70 (3) ◽  
pp. 1382-1390 ◽  
Author(s):  
Caroline Garandeau ◽  
Hélène Réglier-Poupet ◽  
Iharilalao Dubail ◽  
Jean-Luc Beretti ◽  
Patrick Berche ◽  
...  

ABSTRACT Listeria monocytogenes is an intracellular gram-positive human pathogen that invades eucaryotic cells. Among the surface-exposed proteins playing a role in this invasive process, internalin belongs to the family of LPXTG proteins, which are known to be covalently linked to the bacterial cell wall in gram-positive bacteria. Recently, it has been shown in Staphylococcus aureus that the covalent anchoring of protein A, a typical LPXTG protein, is due to a cysteine protease, named sortase, required for bacterial virulence. Here, we identified in silico from the genome of L. monocytogenes a gene, designated srtA, encoding a sortase homologue. The role of this previously unknown sortase was studied by constructing a sortase knockout mutant. Internalin was used as a reporter protein to study the effects of the srtA mutation on cell wall anchoring of this LPXTG protein in L. monocytogenes. We show that the srtA mutant (i) is affected in the display of internalin at the bacterial surface, (ii) is significantly less invasive in vitro, and (iii) is attenuated in its virulence in the mouse. These results demonstrate that srtA of L. monocytogenes acts as a sortase and plays a role in the pathogenicity.


2019 ◽  
Vol 11 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Ulrike Binsker ◽  
Thomas P. Kohler ◽  
Sven Hammerschmidt

A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zufarzaana Zulkeflee ◽  
Ahmad Zaharin Aris ◽  
Zulkifli H. Shamsuddin ◽  
Mohd Kamil Yusoff

A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified asBacillusspp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+and Al3+produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P<0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl2and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.


2005 ◽  
Vol 55 (5) ◽  
pp. 2069-2073 ◽  
Author(s):  
Tatyana G. Sokolova ◽  
Nadezhda A. Kostrikina ◽  
Nikolai A. Chernyh ◽  
Tatjana V. Kolganova ◽  
Tatjana P. Tourova ◽  
...  

A novel anaerobic, thermophilic, alkalitolerant bacterium, strain 2204T, was isolated from a hot spring of the Baikal Lake region. The cells of strain 2204T were straight rods of variable length, Gram-positive with an S-layer, motile with one to two lateral flagella, and often formed aggregates of 3–15 cells. The isolate was shown to be an obligate anaerobe oxidizing CO and producing equimolar quantities of H2 and CO2 according to the equation CO+H2O→CO2+H2. No organic substrates were used as energy sources. For lithotrophic growth on CO, 0·2 g acetate or yeast extract l−1 was required but did not support growth in the absence of CO. Growth was observed in the temperature range 37–68 °C, the optimum being 55 °C. The pH range for growth was 6·7–9·5, the optimum pH being 8·0. The generation time under optimal conditions was 1·3 h. The DNA G+C content was 45 mol%. Penicillin, erythromycin, streptomycin, rifampicin, vancomycin and tetracycline completely inhibited both growth and CO utilization by strain 2204T. Thus, isolate 2204T was found to be the first known moderately thermophilic and alkalitolerant H2-producing anaerobic carboxydotroph. The novel bacterium fell within the cluster of the family Peptococcaceae within the low-G+C-content Gram-positive bacteria, where it formed a separate branch. On the basis of morphological, physiological and phylogenetic features, strain 2204T should be assigned to a novel genus and species, for which the name Thermincola carboxydiphila gen. nov., sp. nov. is proposed. The type strain is strain 2204T (=DSM 17129T=VKM B-2283T=JCM 13258T).


2020 ◽  
Author(s):  
Thomas R. Larson ◽  
Janet Yother

ABSTRACTCapsular polysaccharides (capsules) protect bacteria from environmental insults and can contribute to virulence in pathogenic bacteria. Their appropriate display on the bacterial surface is critical to their functions. In Gram-positive bacteria, most capsules are synthesized by the Wzy polymerase-dependent pathway, which is also utilized in the synthesis of many capsules and O-antigens of Gram-negative bacteria. Synthesis of capsule repeat units initiates on undecaprenyl-phosphate on the inner face of the cytoplasmic membrane, with polymerization occurring on the outer face of the membrane. In Gram-positive bacteria, the capsule can be transferred to peptidoglycan, as in Streptococcus pneumoniae where a direct glycosidic bond to the peptidoglycan N-acetylglucosamine occurs. In S. pneumoniae, capsule can also be detected on the membrane, and this has generally been assumed to reflect polysaccharide that is linked to undecaprenyl-phosphate and in the process of synthesis. We provide evidence here, however, that final membrane linkage occurs through an acylglycerol, and essentially all of the polysaccharide is transferred from the initial undecaprenyl-phosphate acceptor to an alternate acceptor. This step allows for recycling of undecaprenyl-phosphate and represents an additional terminal step in capsule synthesis. In this regard, capsule synthesis resembles that of the wall- and lipoteichoic acids of S. pneumoniae, wherein a common repeat unit and polymer structure are synthesized by the Wzy pathway with divergence at the terminal step that results in linkages to peptidoglycan and a membrane acylglycerol anchor.IMPORTANCELinkage of capsular polysaccharides to the bacterial cell surface is a critical step in assuring the ability of these polymers to fulfill their functions, such as the resistance to complement-mediated phagocytosis that can be essential for pathogenic organisms to survive in host environments. Knowledge of the mechanisms by which these linkages occur is incomplete. In this study, we provide evidence for linkage of an S. pneumoniae Wzy capsule to an acylglycerol, the most abundant class of lipids in the membrane. This linkage provides a terminal acceptor for capsule that occurs in addition to that of peptidoglycan. Transfer to these terminal receptors is an essential step in CPS synthesis, as failure to do so can be lethal for the cell.


Sign in / Sign up

Export Citation Format

Share Document