scholarly journals Morphology, Mechanical, and Water Barrier Properties of Carboxymethyl Rice Starch Films: Sodium Hydroxide Effect

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 331
Author(s):  
Pornchai Rachtanapun ◽  
Sarinthip Thanakkasaranee ◽  
Rafael A. Auras ◽  
Nareekan Chaiwong ◽  
Kittisak Jantanasakulwong ◽  
...  

Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10–50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.

2012 ◽  
Vol 476-478 ◽  
pp. 2100-2104 ◽  
Author(s):  
Jian Jun Yan ◽  
Zheng Li ◽  
Jian Fei Zhang ◽  
Chang Sheng Qiao

In the paper, preparation and properties of pullulan composite films were studied. Several kinds of materials (glass, iron, steel, propene polymer and polyvinyl chloride plates) were chosen for preparing films. The results showed that the steel plate was the most suitable material for preparing film. The tensile strength of pullulan film was significantly reduced when the drying temperature was higher than 50°C. The time of dissolution observably decreased, whereas water vapor permeability increased with increasing drying temperature. Pullulan film has higher tensile strength, better water barrier properties, shorter solubilization time and lower elongation at break than those of hydroxypropylmethylcellulose film, respectively. The composite film (Pullulan and hydroxypropylmethylcellulose) with weight ratio (1/2) has higher tensile strength, better water barrier properties, longer solubilization time than those of other ratios. Difference properties of films could be obtained in different weight ratio (Pullulan and hydroxypropylmethylcellulose).


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 8029-8047
Author(s):  
Kassim M. Haafiz ◽  
Owolabi F. A. Taiwo ◽  
Nadhilah Razak ◽  
Hashim Rokiah ◽  
Hussin M. Hazwan ◽  
...  

A biocomposite was successfully prepared by blending montmorillonite (MMT)/hemicellulose from oil palm empty fruit bunches (OPEFB) with carboxymethyl cellulose (CMC) through solution casting. The composite was characterized by scanning electron microscopy (SEM), Fourier transmission infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results displayed good compatibility between the mixtures of the blended MMT/hemicellulose and CMC due to the hydrogen bonding and electrostatic interaction. There was an improvement in the thermal analysis through their thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC), mechanical properties (tensile strength and tensile modulus),and water vapor permeability (WVP). The best values of tensile strength and tensile modulus of 47.5 MPa and 2.62 MPa, respectively, were obtained from 60H-40CMC-MMT nanocomposite films. The results showed that the mixture of the blended MMT/hemicelluloses and CMC produced a robust nanocomposite film with improved physical and mechanical properties, demonstrating that it is a promising candidate for green packaging applications.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Guanghui Shen ◽  
Guoxian Yu ◽  
Hejun Wu ◽  
Shanshan Li ◽  
Xiaoyan Hou ◽  
...  

This work evaluated the improvement effects of lipids incorporation on water resistance of composite biodegradable film prepared with wheat bran cellulose/wheat gluten (WBC/WG) using an alkaline–ethanol film forming system. Four types of lipids, paraffin wax (PW), beeswax (BW), paraffin oil (PO), and oleic acid (OA), were tested. We found that PW, BW, and PO incorporation at 5–20% improved water vapor permeability (WVP) and surface hydrophobicity of prepared films. Particularly, incorporation of 15% BW could best improve the water resistance properties of the film, with the lowest WVP of 0.76 × 10−12 g/cm·s·Pa and largest water contact angle (WCA) of 86.18°. Incorporation of OA led to the decline in moisture barrier properties. SEM images revealed that different lipids incorporation changed the morphology and of the composite film, and cross-sectional morphology indicated BW-incorporated film obtained more uniform and compact structures compared to other films. Moreover, Fourier transform infrared spectra indicated that the incorporation of PW or BW enhanced the molecular interactions between the film components, confirmed by the chemical shift of characteristic peaks at 3277 and 1026 cm−1. Differential scanning calorimetry results revealed that incorporation of PW, BW, and PO increased films’ melting point, decomposition temperatures, and enthalpy values. Furthermore, the presence of most lipids decreased tensile strength and elongation at the break of the film. Overall, the composite film containing 15% BW obtained the most promising water resistance performance and acceptable mechanical properties, and it thus most suitable as a hydrophobic biodegradable material for food packaging.


2021 ◽  
Vol 1047 ◽  
pp. 97-102
Author(s):  
Nattanicha Khamsao ◽  
Kornkamon Waengwan ◽  
Sunisorn Konchai ◽  
Poonnapat Patthong ◽  
Bpantamars Phadungchob ◽  
...  

Seedling bags are low cost and light weight containers used by farmers to germinate and sprout seeds into seedlings before transplanting into the ground. However, cutting and removing seedling bags before the transplantation can damage the plant roots and cause losses in their productivity. In addition, plastics used in conventional seedling bags contribute to more plastic waste during this process. This study offers a solution to these problems with alternative biodegradable materials; i.e. modified papers made from an invasive alien aquatic plant species—water hyacinth—and enhanced with Chitosan solution coating. Papers were made from water hyacinth and dipped or sprayed with Chitosan solution in acetic acid at concentrations of 1% wt., 1.5% wt., and 2% wt. The dipping method showed better water barrier properties than the spraying method in every concentration, with 2% wt. concentration having the best barrier properties. The 2% wt. concentration of Chitosan coating by dipping method changed the water contact angle of the water hyacinth paper from a hydrophilic to a hydrophobic surface. This enhancement in water resistance was confirmed by water absorption time, which reached over 1.5 hours—3 times longer than the spraying method.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 384
Author(s):  
Juan Tirado-Gallegos ◽  
Paul Zamudio-Flores ◽  
José Ornelas-Paz ◽  
Claudio Rios-Velasco ◽  
Guadalupe Olivas Orozco ◽  
...  

Apple starch films were obtained from apples harvested at 60, 70, 80 and 90 days after full bloom (DAFB). Mechanical properties and water vapor permeability (WVP) were evaluated. The apple starch films at 70 DAFB presented higher values in the variables of tensile strength (8.12 MPa), elastic modulus (3.10 MPa) and lower values of water vapor permeability (6.77 × 10−11 g m−1 s−1 Pa−1) than apple starch films from apples harvested at 60, 80 and 90 DAFB. Therefore, these films were chosen to continue the study incorporating ellagic acid (EA). The EA was added at three concentrations [0.02% (FILM-EA0.02%), 0.05% (FILM-EA0.05%) and 0.1% (FILM-EA0.1%) w/w] and compared with the apple starch films without EA (FILM-Control). The films were characterized by their physicochemical, optical, morphological and mechanical properties. Their thermal stability and antioxidant capacity were also evaluated. The FILM-Control and FILM-EA0.02% showed a uniform surface, while FILM-EA0.05% and FILM-EA0.1% showed a rough surface and insoluble EA particles. Compared to FILM-Control, EA modified the values of tensile strength, elasticity modulus and elongation at break. The antioxidant capacity increased as EA concentration did. EA incorporation allowed obtaining films with higher antioxidant capacity, capable of blocking UV light with better mechanical properties than film without EA.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


2016 ◽  
Vol 5 (3) ◽  
pp. 61
Author(s):  
J. M. Tirado-Gallegos ◽  
D. R. Sepúlveda-Ahumada ◽  
P. B. Zamudio-Flores ◽  
M. L. Rodríguez-Marin ◽  
Francisco Hernández-Centeno ◽  
...  

<p>Packaging increases the shelf life of food and facilitates its handling, transportation and marketing. The main packaging materials are plastics derived from petroleum, but their accumulation has given rise to environmental problems. An alternative is the use of biodegradable materials. In this regard, starch is an excellent choice because it is an abundant and renewable source with film-forming properties. However, the films obtained from starch have some limitations with respect to their mechanical and barrier properties. Several strategies have been developed in order to improve these limitations, ranging from the addition of lipids to the modification of the polymer structure. The aim of this review was propose the use of ellagic acid as a cross-linking agent that may improves the mechanical and barrier properties in films based on exists reports that phenolic compounds interact with starch-based materials decreasing their rate of retrogradation. Furthermore, ellagic acid is a powerful natural antioxidant, which would allow the production of active packaging with antioxidant properties, in addition to the improvement of the mechanical and barrier properties of starch films. In this concern more studies such as Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis are necessary to verify the structural changes and interactions between starch and ellagic acid. We expect extensive use of it in the future of packaging materials.</p>


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 183 ◽  
Author(s):  
Thi Cao ◽  
So-Young Yang ◽  
Kyung Song

In this study, barnyard millet starch (BMS) was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO). The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.


Sign in / Sign up

Export Citation Format

Share Document