scholarly journals Inflammaging and Brain: Curcumin and Its Beneficial Potential as Regulator of Microglia Activation

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 341
Author(s):  
Antonia Cianciulli ◽  
Rosa Calvello ◽  
Melania Ruggiero ◽  
Maria Antonietta Panaro

Inflammaging is a term used to describe the tight relationship between low-grade chronic inflammation and aging that occurs during physiological aging in the absence of evident infection. This condition has been linked to a broad spectrum of age-related disorders in various organs including the brain. Inflammaging represents a highly significant risk factor for the development and progression of age-related conditions, including neurodegenerative diseases which are characterized by the progressive dysfunction and degeneration of neurons in the brain and peripheral nervous system. Curcumin is a widely studied polyphenol isolated from Curcuma longa with a variety of pharmacologic properties. It is well-known for its healing properties and has been extensively used in Asian medicine to treat a variety of illness conditions. The number of studies that suggest beneficial effects of curcumin on brain pathologies and age-related diseases is increasing. Curcumin is able to inhibit the formation of reactive-oxygen species and other pro-inflammatory mediators that are believed to play a pivotal role in many age-related diseases. Curcumin has been recently proposed as a potential useful remedy against neurodegenerative disorders and brain ageing. In light of this, our current review aims to discuss the potential positive effects of Curcumin on the possibility to control inflammaging emphasizing the possible modulation of inflammaging processes in neurodegenerative diseases.

2021 ◽  
Vol 13 ◽  
Author(s):  
Anna Gasiorowska ◽  
Malgorzata Wydrych ◽  
Patrycja Drapich ◽  
Maciej Zadrozny ◽  
Marta Steczkowska ◽  
...  

The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.


2021 ◽  
Vol 162 (33) ◽  
pp. 1318-1327
Author(s):  
Tamás Halmos ◽  
Ilona Suba

Összefoglaló. Az emberek a lehető leghosszabb ideig akarnak élni, jó egészségben. Ha kiküszöbölnénk a kedvezőtlen külső körülményeket, a várható élettartam meghaladhatná a 100 évet. A 20. és 21. században a jóléti társadalmakban a várható élettartam jelentősen megnőtt, így Magyarországon is. Az áttekintett irodalom alapján megvizsgáltuk, hogy a genetika és az öröklődés mellett milyen endokrinológiai és metabolikus tényezők játszanak szerepet az élet meghosszabbításában. Megvizsgáltunk minden endogén tényezőt, amely pozitívan vagy negatívan befolyásolhatja az életkorral összefüggő betegségeket (Alzheimer-kór, szív- és érrendszeri betegségek, rák) és az élettartamot. Kiemeltük a hyperinsulinaemia, az inzulinrezisztencia, a metabolikus szindróma öregedést gyorsító hatását, az inzulinszerű növekedési hormon-1 ellentmondásos szerepét, valamint az élet meghosszabbításában részt vevő, újabban felfedezett peptideket, mint a klotho és a humanin. Ismertettük a mitochondriumok szerepét az élettartam meghatározásában, bemutattuk a mitohormesis folyamatát és annak stresszvédő funkcióját. Bemutattuk a rapamicin célszervét, az mTOR-t, amelynek gátlása meghosszabbítja az élettartamot, valamint a szirtuinokat. Kitértünk az autophagia folyamatára, és ismertettük a szenolitikumok szerepét az öregedésben. Az időskori autoimmunitás csökkenése hozzájárul az élettartam rövidüléséhez, utaltunk a thymus koordináló szerepére. Kiemeltük a bélmikrobiom fontos szerepét az élettartam szabályozásában. Hivatkoztunk a „centenáriusok” megfigyeléséből nyert humánadatokra. Megvizsgáltuk, milyen beavatkozási lehetőségek állnak rendelkezésre az egészségben tölthető élettartam meghosszabbításához. Az életmódbeli lehetőségek közül kiemeltük a kalóriabevitel-csökkentés és a testmozgás jótékony szerepét. Megvizsgáltuk egyes gyógyszerek feltételezett hatásait. Ezek közé tartozik a metformin, az akarbóz, a rezveratrol. E gyógyszerek mindegyikének hatása hasonló a kalóriamegszorításéhoz. Nincs olyan „csodaszer”, amely igazoltan meghosszabbítja az élettartamot emberben. Egyes géneknek és génmutációknak jótékony hatásuk van, de ezt környezeti tényezők, betegségek, balesetek és más külső ártalmak módosíthatják. Kiemeljük az elhízás, az alacsony fokozatú gyulladás és az inzulinrezisztencia öregedésre gyakorolt gyorsító hatását. A metabolikus szindróma elterjedtsége miatt ez jelentős népegészségügyi kockázatot jelent. Az inzulin, a növekedési hormon és az inzulinszerű növekedési faktorok hatásainak értékelése továbbra is ellentmondásos. Az egészséges, szellemileg és fizikailag aktív életmód, a kalóriacsökkentés mindenképpen előnyös. Az életet meghosszabbító szerek értékelése még vitatott. Orv Hetil. 2021; 162(33): 1318–1327. Summary. People want to live as long as possible in good health. If we eliminate the unfavorable external conditions, the life expectancy could exceed 100 years. In the 20th and 21th centuries, life expectancy in welfare societies increased significantly, including in Hungary. Based on the reviewed literature, we examined what endocrinological and metabolic factors play a role in prolonging life in addition to genetics and inheritance. We examined all endogenous factors that can positively or negatively affect age-related diseases (Alzheimer’s disease, cardiovascular disease, cancer) and longevity. We highlighted the aging effects of hyperinsulinemia, insulin resistance, metabolic syndrome, the controversial role of insulin-like growth factor-1, and more recently discovered peptides involved in prolonging lifespan, such as klotho and humanin. We described the role of mitochondria in determining longevity, we demonstrated the process of mitohormesis and its stress-protective function. We presented the target organ of rapamycin, mTOR, the inhibition of which prolongs lifespan, as well as sirtuins. We covered the process of autophagy and described the role of senolytics in aging. The decrease in autoimmunity in old age contributes to the shortening of life expectancy, we referred to the coordinating role of the thymus. We highlighted the important role of intestinal microbiome in the regulation of longevity. We referred to human data obtained from observations on “centenarians”. We examined what intervention options are available to prolong healthy life expectancy. Among the lifestyle options, we highlighted the beneficial role of calorie reduction and exercise. We examined the putative beneficial effects of some drugs. These include metformin, acarbose, resveratrol. The effect of each of these drugs is similar to calorie restriction. There is no “miracle cure” that has been shown to prolong life-span in humans. Some genes and gene mutations have beneficial effects, but this can be modified by environmental factors, diseases, accidents, and other external harms. We highlight the accelerating effects of obesity, low-grade inflammation, and insulin resistance on aging. Due to the prevalence of metabolic syndrome, this poses a significant risk to public health. The assessment of the effects of insulin, growth hormone, and insulin-like growth factors remains controversial. A healthy, mentally and physically active lifestyle, calorie reduction is definitely beneficial. The evaluation of life-prolonging agents is still controversial. Orv Hetil. 2021; 162(33): 1318–1327.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4794
Author(s):  
Tarek Benameur ◽  
Raffaella Soleti ◽  
Maria Antonietta Panaro ◽  
Maria Ester La Torre ◽  
Vincenzo Monda ◽  
...  

The nutrients and their potential benefits are a new field of study in modern medicine for their positive impact on health. Curcumin, the yellow polyphenolic compound extracted from Curcuma longa species, is widely used in traditional Ayurvedic medicine to prevent and contrast many diseases, considering its antioxidant, immunomodulatory, anti-inflammatory, anti-microbial, cardio-protective, nephron-protective, hepato-protective, anti-neoplastic, and anti-rheumatic proprieties. In recent years, the investigations of curcumin have been focused on its application to aging and age-associated diseases. Aging is a physiological process in which there is a decreasing of cellular function due to internal or external stimuli. Oxidative stress is one of the most important causes of aging and age-related diseases. Moreover, many age-related disorders such as cancer, neuroinflammation, and infections are due to a low-grade chronic systemic inflammation. Curcumin acting on different proteins is able to contrast both oxidative stress than inflammation. In the brain, curcumin is able to modulate inflammation induced by microglia. Finally in brain tumors curcumin is able to reduce tumor growth by inhibition of telomerase activity. This review emphasizes the anti-aging role of curcumin focusing on its mechanism to counteract aging in the brain. Moreover, new formulations to increase the bioavailability of curcumin are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paddy Ssentongo ◽  
Emily S. Heilbrunn ◽  
Anna E. Ssentongo ◽  
Shailesh Advani ◽  
Vernon M. Chinchilli ◽  
...  

AbstractSusceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the risk of mortality among people living with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) (PLWHA) is largely unknown. PLWHA are unique due to their altered immune system from their history of chronic HIV infection and their use of antiretroviral therapy, some of which have been used experimentally to treat coronavirus disease 2019 (COVID-19). Therefore, we conducted a systematic review and meta-analysis to assess the epidemiology of SARS-COV-2/HIV coinfection and estimate associated mortality from COVID-19 (Prospero Registration ID: CRD42020187980). PubMed, SCOPUS, OVID and Cochrane Library databases, and medRxiv preprint repositories were searched from January 1, 2020, to December 12, 2020. Data were extracted from studies reporting COVID-19 attack and mortality rates in PLWHA compared to their HIV-negative counterparts. Pooled attack and mortality risks were quantified using random-effects models. We identified 22 studies that included 20,982,498 participants across North America, Africa, Europe, and Asia. The median age was 56 years, and 50% were male. HIV-positive persons had a significantly higher risk of SARS-CoV-2 infection [risk ratio (RR) 1.24, 95% CI 1.05–1.46)] and mortality from COVID-19 (RR 1.78, 95% CI 1.21–2.60) than HIV-negative individuals. The beneficial effects of tenofovir and protease-inhibitors in reducing the risk of SARS-CoV-2 infection and death from COVID-19 in PLWHA remain inconclusive. HIV remains a significant risk factor for acquiring SARS-CoV-2 infection and is associated with a higher risk of mortality from COVID-19. In support of the current Centers for Disease Control and Prevention (CDC) guidelines, persons with HIV need priority consideration for the SARS-CoV-2 vaccine.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Sangkyu Kim ◽  
S. Michal Jazwinski

The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.


2009 ◽  
Vol 45 (4) ◽  
pp. 607-618 ◽  
Author(s):  
Graciela Cristina dos Santos ◽  
Lusânia Maria Greggi Antunes ◽  
Antonio Cardozo dos Santos ◽  
Maria de Lourdes Pires Bianchi

According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.


2020 ◽  
Vol 1 (2) ◽  
pp. 40-44
Author(s):  
Anton A. Beliaev ◽  
◽  
Olga V. Kotova ◽  
Elena S. Akarachkova ◽  
◽  
...  

Patients with musculoskeletal diseases (MSDs) constitute a heavy burden on the society. Therefore, there is a constant search for safe and efficient methods for treatment of such conditions, in which inflammation underlies the pathogenetic process. Chronic back pain is associated with physical inactivity and other lifestyle factors, such as tobacco consumption, poor dietary habits, overweight, poor sleep quality, and uncontrollable stress. For example, obesity is associated with low-grade chronic systemic inflammation, and is, therefore, a significant risk factor for occurrence and chronicity of back pain. The patient's lifestyle may contribute to MSDs, including chronic MSDs associated with inflammation and decreased functional capacity, both independently or in combination with other risk factors. The most common drugs used for treatment of MSDs are the non-steroidal anti-inflammatory drugs (NSAIDs). However, taking into account the possible NSAID-induced adverse events, the physicians are constantly thinking about ways to reduce the risks. В vitamins (B1, B6 and B12) possess analgesic and anti-inflammatory effects, which are discussed in the paper. When used in combination with NSAIDs, particularly in combination of diclofenac with vitamins B1, B6 and B12, the B vitamins possess some other positive effects contributing to restoration of mobility, pain relief and functional recovery in patients with low back pain. Such combination (diclofenac + vitamins B1, B6 and B12) is represented on the Russian market by Neurodiclovit, the successful use of which is discussed in the case report.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
David H Cribbs ◽  
Giselle Passos ◽  
Vitaly Vasilevko

Hypertension is a major risk factor for intracerebral hemorrhage (ICH), and the accumulation of amyloid-beta (Aβ) in the cerebrovascular system, cerebral amyloid angiopathy (CAA), is also a significant risk factor for intracerebral hemorrhage ICH. Currently, there are no animal studies demonstrating a direct involvement of hypertension in the accumulation of Alzheimer’s disease-like pathology. To address this issue we have developed several mouse models that combine hypertension protocols with amyloid precursor protein (APP) transgenic mice (Tg2576), which accumulate significant CAA in the large cerebral vessels and the meninges by 18 months of age. The goal of this study was to determine the effect of acute and chronic hypertension on ICH in wildtype and a transgenic mouse model overexpressing a mutant human amyloid precursor protein (Tg2576 mice) associated with early onset AD and CAA. Fifteen-month-old Tg2576 mice and non-transgenic (nTg) littermates were treated with an angiotensin II (AngII) infusion (1000 ng/kg/min) and L-NAME (100 mg/kg/day) in drinking water to produce chronic hypertension. One week later, transient acute hypertension was induced by daily AngII injections (0.5 μg/g, s.c., twice daily) to produce ICH. A similar increase in mean blood pressure was observed in Tg2576 and nTg mice when evaluated 2 weeks after initiation of treatment. However Tg2576 mice had a higher incidence of signs of stroke compared with nTg littermates (P > 0.05). These data suggest that the accumulation of Aβ in the brain has an important role in development of ICH. Moreover, there was robust glial activation and increase in CAA in the gray matter of Tg2576 mice showing that hypertension may affect gray as well as white matter in the brain. Further studies may provide insights into the hypertension-induced changes in the cerebral vascular system that initiated the increase in CAA. The accumulation of Aβ in the cerebrovascular system is a significant risk factor for intracerebral hemorrhage (ICH), and has been linked to endothelial transport failure and blockage of perivascular drainage. While management of hypertension and atherosclerosis can reduce the incidence of ICH, there are currently no approved therapies for attenuating CAA.


2020 ◽  
Author(s):  
Xin Wu ◽  
Chenkai Wang ◽  
Kun Wang ◽  
Shuai Cui ◽  
Shengbing Wu ◽  
...  

Abstract Background: Electroacupuncture (EA) alleviates acute myocardial ischemia (AMI) by regulating some brain areas, including hippocampus. The locus coeruleus (LC) is the main source of norepinephrine (NE) in the brain, including the hippocampus, and regulates cardiovascular function. The aim of the present work was to assess whether LC mediates the positive effects of EA in AMI by altering gene expression levels in the hippocampus. We addressed this in the present study by hippocampus transcriptome profiling in a rat model of AMI following EA treatment. Results: Myocardial injury markers (ischemia-modified albumin, homocysteine and lipoprotein- associated phospholipase A2) in the serum were downregulated in EA (P<0.05) compared to the M group and upregulated in E+L group (P<0.05) compared to E group. RNA sequencing analysis of the hippocampus revealed that the downregulation of 27 genes in M vs S as well as upregulation of 40 genes in M vs S were reversed by EA. These differentially expressed genes, which were validated by quantitative real-time PCR, were enriched in 20 Kyoto Encyclopedia of Genes and Genomes pathways related to glycerolipid, glycerophospholipid, and arachidonic acid metabolism as well asnervous system function (glutamatergic, cholinergic, serotonergic, GABAergic synapses). Conclusions: LC mediates the beneficial effects of EA on AMI-induced injury may be related to the observed transcriptional regulations in the hippocampus. These results provide molecular-level evidence for the therapeutic efficacy of EA in the treatment of AMI.


2018 ◽  
Vol 17 (8) ◽  
pp. 595-603 ◽  
Author(s):  
Nurul ‘Ain Arshad ◽  
Teoh Seong Lin ◽  
Mohamad Fairuz Yahaya

Background & Objective: Metabolic syndrome (MetS) is an interconnected group of physiological, biochemical, clinical and metabolic factors that directly increase the risk of cardiovascular disease, type 2 diabetes mellitus (T2DM) and mortality. Rising evidence suggests that MetS plays a significant role in the progression of Alzheimer’s disease and other neurodegenerative diseases. Nonetheless, the factors linking this association has not yet been elucidated. As we are facing an increasing incidence of obesity and T2DM in all stages of life, understanding the association of MetS and neurodegenerative diseases is crucial to lessen the burden of the disease. Conclusion: In this review, we will discuss the possible mechanisms which may relate the association between MetS and cognitive decline which include vascular damages, elevation of reactive oxygen species (ROS), insulin resistance and low-grade inflammation.


Sign in / Sign up

Export Citation Format

Share Document