cerebrovascular system
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Meng-Wan Zhang ◽  
Xiao-Hui Wang ◽  
Jing Shi ◽  
Jian-Guang Yu

Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yicheng Xu ◽  
Ke Li ◽  
Xinlu Yao ◽  
Qiyan Yang ◽  
Peifu Wang

Perioperative bilateral medial medullary infarction (BMMI) cases mimicking acute motor axonal neuropathy (AMAN) under general anesthesia have not been reported. We describe a patient who suffered flaccid quadriplegia and could not wean from mechanical ventilation after emergence from general anesthesia in cardiac surgery. A diagnosis of AMAN was considered, but intravenous immunoglobulin showed little efficacy. Magnetic resonance imaging of the patient later revealed BMMI with “snake eyes appearance,” and he was found to have severe vertebral artery stenosis. Considering the association between severe coronary heart disease and cerebrovascular stenosis, we highlight the significance of preoperative evaluation and comprehensive management of the cerebrovascular system for certain patients.


Author(s):  
Fatma Taher ◽  
Neema Prakash

Cerebrovascular diseases are one of the serious causes for the increase in mortality rate in the world which affect the blood vessels and blood supply to the brain. In order, diagnose and study the abnormalities in the cerebrovascular system, accurate segmentation methods can be used. The shape, direction and distribution of blood vessels can be studied using automatic segmentation. This will help the doctors to envisage the cerebrovascular system. Due to the complex shape and topology, automatic segmentation is still a challenge to the clinicians. In this paper, some of the latest approaches used for segmentation of magnetic resonance angiography images are explained. Some of such methods are deep convolutional neural network (CNN), 3dimentional-CNN (3D-CNN) and 3D U-Net. Finally, these methods are compared for evaluating their performance. 3D U-Net is the better performer among the described methods.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haishuang Tang ◽  
Xiaoxi Zhang ◽  
Gaici Xue ◽  
Fengfeng Xu ◽  
Qingsong Wang ◽  
...  

AbstractBone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat to human health in modern society. In recent decades, many studies have revealed the underlying biology and mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment and basic research of cerebrovascular diseases.


2021 ◽  
pp. 107385842110122
Author(s):  
Tamara L. Baker ◽  
Denes V. Agoston ◽  
Rhys D. Brady ◽  
Brendan Major ◽  
Stuart J. McDonald ◽  
...  

The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.


2021 ◽  
Vol 11 (9) ◽  
pp. 4022
Author(s):  
Fatma Taher ◽  
Heba Kandil ◽  
Yitzhak Gebru ◽  
Ali Mahmoud ◽  
Ahmed Shalaby ◽  
...  

Blood pressure (BP) changes with age are widespread, and systemic high blood pressure (HBP) is a serious factor in developing strokes and cognitive impairment. A non-invasive methodology to detect changes in human brain’s vasculature using Magnetic Resonance Angiography (MRA) data and correlation of cerebrovascular changes to mean arterial pressure (MAP) is presented. MRA data and systemic blood pressure measurements were gathered from patients (n = 15, M = 8, F = 7, Age = 49.2 ± 7.3 years) over 700 days (an initial visit and then a follow-up period of 2 years with a final visit.). A novel segmentation algorithm was developed to delineate brain blood vessels from surrounding tissue. Vascular probability distribution function (PDF) was calculated from segmentation data to correlate the temporal changes in cerebral vasculature to MAP calculated from systemic BP measurements. A 3D reconstruction of the cerebral vasculature was performed using a growing tree model. Segmentation results recorded 99.9% specificity and 99.7% sensitivity in identifying and delineating the brain’s vascular tree. The PDFs had a statistically significant correlation to MAP changes below the circle of Willis (p-value = 0.0007). This non-invasive methodology could be used to detect alterations in the cerebrovascular system by analyzing MRA images, which would assist clinicians in optimizing medical treatment plans of HBP.


2021 ◽  
Author(s):  
Adele Fanelli ◽  
Laura Ferlauto ◽  
Elodie Geneviève Zollinger ◽  
Olivier Brina ◽  
Philippe Reymond ◽  
...  

AbstractNeural recording and stimulation have been widely used to mitigate traumatic injuries, neurodegenerative diseases or mental disorders. Most neural interfaces commonly require invasive surgery, potentially entailing both transient and permanent complications. A promising strategy designed to overcome these risks involves exploiting the cerebrovascular system as an access route to the neural tissue. Here we present a novel endovascular neural interface for neural recording and stimulation, fully polymeric and degradable. This concept might allow for better integration of the device in the body, reduced inflammatory reaction, the possibility of replacing the implant after degradation, and avoiding removal surgeries. The vasculature’s strategic distribution and the use of soft polymers for the device’s fabrication will permit targeting both the brain vasculature and the peripheral system. Therefore, this novel endovascular neural interface will broaden the range of applications from neurological diseases and mental disorders to bioelectronics medicine.


2021 ◽  
Vol 20 ◽  
Author(s):  
Mustafa Etli ◽  
Oguz Karahan

Abstract Moyamoya disease is a rare disorder that involves the cerebrovascular system. Usually, it leads to occlusion of the arteries of the cerebral system and causes cerebral circulatory complaints. A 48-year-old female patient was admitted to our clinic with intermittent claudication in both legs. Biphasic and monophasic waveform patterns were detected bilaterally in distal (trifurcation arteries) lower extremities with Doppler sonography. The patient therefore underwent systemic vascular examination. Computed tomography angiography revealed bilateral carotid occlusion at the level of supraclinoid segments, and opacifications were detected at the distal segments of the bilateral anterior cerebellar and middle cerebellar arteries. The patient was diagnosed with moyamoya disease, and anticoagulant treatment was started. In conclusion, most previous reports have presented the cerebrovascular involvement of moyamoya disease. However, this disease can involve different peripheral vascular systems and careful and systemic vascular examination is necessary for an exact diagnosis.


Sign in / Sign up

Export Citation Format

Share Document