scholarly journals Metastasis Model of Cancer Stem Cell-Derived Tumors

2020 ◽  
Vol 3 (3) ◽  
pp. 60 ◽  
Author(s):  
Hager Mansour ◽  
Ghmkin Hassan ◽  
Said M. Afify ◽  
Ting Yan ◽  
Akimasa Seno ◽  
...  

Metastasis includes the dissemination of cancer cells from a malignant tumor and seed in distant sites inside the body forming secondary tumors. Metastatic cells from the primary tumor can move even before the cancer is detected. Therefore, metastases are responsible for more than 90% of cancer-related deaths. Over recent decades there has been adequate evidence suggesting the existence of CSCs with self-renewing and drug-resistant potency within heterogeneous tumors. Cancer stem cells (CSCs) act as a tumor initiating cells and have roles in tumor retrieve and metastasis. Our group recently developed a unique CSC model from mouse induced pluripotent stem cells cultured in the presence of cancer cell-conditioned medium that mimics tumors microenvironment. Using this model, we demonstrated a new method for studying metastasis by intraperitoneal transplantation of tumors and investigate the metastasis ability of cells from these segments. First of all, CSCs were injected subcutaneously in nude mice. The developed malignant tumors were minimized then transplanted into the peritoneal cavity. Following this, the developed tumor in addition to lung, pancreas and liver were then excised and analyzed. Our method showed the metastatic potential of CSCs with the ability of disseminated and moving to blood circulation and seeding in distant organs such as lung and pancreas. This method could provide a good model to study the mechanisms of metastasis according to CSC theory.

2019 ◽  
Vol 6 (3) ◽  
pp. 73 ◽  
Author(s):  
Said M. Afify ◽  
Ghmkin Hassan ◽  
Amira Osman ◽  
Anna Sanchez Calle ◽  
Hend M Nawara ◽  
...  

Metastasis develops when cancer cells spread from the primary site of a malignant tumor to the surrounding and distant tissues, and it is the most critical problem in cancer treatment. Our group developed cancer stem cells (CSCs) from induced pluripotent stem cells (iPSCs) in the presence of a conditioned medium (CM) of cancer-derived cells. The CSCs were characterized by the formation of malignant tumors in vivo, followed by metastasis. In this study, CSCs converted from mouse iPSCs in the presence of CM from hepatocellular carcinoma (HCC) cell line Huh7 cells. These converted cells (miPS-Huh7cm cells) were established as the metastatic cells. The generated CSCs were injected into the liver or spleen of nude mice. Almost one month after transplantation, the tumors were excised, and the primary cultured cells derived from the malignant tumors and metastatic nodules were evaluated by stemness and metastatic markers to compare their differences. The miPS-Huh7cm cells exhibited metastatic potential, and efficiently formed malignant tumors with lung and/or liver lesions in vivo, whereas the injected miPS formed teratoma. The primary cultured cells derived from the malignant tumors and metastatic nodules sustained the expression of stemness markers, such as Nanog, Klf4 and c-Myc, and acquired cancer stem markers, such as CD90, CD44 and ALDH1. Simultaneously, the expression of metastatic markers, such as Slug, Twist1 and vimentin, in primary cells derived from the malignant tumors, was higher than in metastatic nodules. The CSCs derived from iPSCs, forming malignant tumors and displaying high metastasis, will provide a good animal model to study the mechanisms of metastasis.


2018 ◽  
Vol 19 (12) ◽  
pp. 3968 ◽  
Author(s):  
Enrico Spugnini ◽  
Mariantonia Logozzi ◽  
Rossella Di Raimo ◽  
Davide Mizzoni ◽  
Stefano Fais

Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial–mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called “tumor niches” in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.


2020 ◽  
Vol 21 (17) ◽  
pp. 6124
Author(s):  
Clara Sanjurjo-Rodríguez ◽  
Rocío Castro-Viñuelas ◽  
María Piñeiro-Ramil ◽  
Silvia Rodríguez-Fernández ◽  
Isaac Fuentes-Boquete ◽  
...  

Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Antonio Romito ◽  
Gilda Cobellis

Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jung-Hwan Lee ◽  
Seog-Jin Seo

The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1782
Author(s):  
Yoko Suzuki-Horiuchi ◽  
Henning Schmitz ◽  
Carlotta Barlassina ◽  
David Eccles ◽  
Martina Sinn ◽  
...  

Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs—31 of which are novel in planarian—that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.


2021 ◽  
Vol 8 ◽  
Author(s):  
Crystal C. Kennedy ◽  
Erin E. Brown ◽  
Nadia O. Abutaleb ◽  
George A. Truskey

The vascular endothelium is present in all organs and blood vessels, facilitates the exchange of nutrients and waste throughout different organ systems in the body, and sets the tone for healthy vessel function. Mechanosensitive in nature, the endothelium responds to the magnitude and temporal waveform of shear stress in the vessels. Endothelial dysfunction can lead to atherosclerosis and other diseases. Modeling endothelial function and dysfunction in organ systems in vitro, such as the blood–brain barrier and tissue-engineered blood vessels, requires sourcing endothelial cells (ECs) for these biomedical engineering applications. It can be difficult to source primary, easily renewable ECs that possess the function or dysfunction in question. In contrast, human pluripotent stem cells (hPSCs) can be sourced from donors of interest and renewed almost indefinitely. In this review, we highlight how knowledge of vascular EC development in vivo is used to differentiate induced pluripotent stem cells (iPSC) into ECs. We then describe how iPSC-derived ECs are being used currently in in vitro models of organ function and disease and in vivo applications.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2453 ◽  
Author(s):  
Sara Romanazzo ◽  
Stephanie Nemec ◽  
Iman Roohani

Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.


2015 ◽  
Vol 8 ◽  
pp. CGM.S31244 ◽  
Author(s):  
Sten Friberg ◽  
Andreas Nystrom

Background Metastatic cells from a primary tumor can occur before the primary cancer is detected. Metastatic cells can also remain in the patient for many years after removal of the primary tumor without proliferating. These dormant malignant cells can awaken and cause recurrent disease decades after the primary treatment. The purpose of this article is to review the clinical evidence for early dissemination and late recurrences in human malignant tumors. We used the following definitions: dormancy of cells may be defined as a nonproliferating state or an arrest in the cell cycle that results in a prolonged G0 phase. If one accepts the term “late metastases” to indicate a period exceeding 10 years from the removal of the primary tumor, then the two malignancies in which this occurs most frequently are cutaneous malignant melanoma (CMM) and renal cell carcinoma (RCC). Methods PubMed, Web of Science, and Scopus were searched with the keywords “metastases,” “early dissemination,” “late recurrences,” “inadvertently transmitted cancer,” “tumor growth rate,” “dormancy,” “circulating tumor cells,” and “transplantation of cancer.” Results Several case reports of early dissemination and late recurrences of various types of malignancies were found. Analyses of the growth rates of several malignant tumors in the original host indicated that the majority of cancers had metastasized years before they were detected. CMM, RCC, and malignant glioblastoma were the three most common malignancies resulting from an organ transplantation. CMM and RCC were also the two most common malignancies that showed dormancy. In several cases of transplanted CMM and RCC, the donor did not have any known malignancy or had had the malignancy removed so long ago that the donor was regarded as cured. Conclusion (1) Metastases can frequently exist prior to the detection of the primary tumor. (2) Metastatic cells may reside in organs in the original host that are not usually the site of detectable secondary tumors, for example, the kidneys and heart. (3) Metastatic cells remain dormant for decades after the primary tumor has been removed. (4) Dormancy might be reversible and lead to late recurrences.


Sign in / Sign up

Export Citation Format

Share Document