scholarly journals Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 46 ◽  
Author(s):  
B. Tugba Camic ◽  
Hong In Jeong ◽  
M. Hasan Aslan ◽  
Arif Kosemen ◽  
Seongbeom Kim ◽  
...  

Solution processed transparent conductive electrodes (TCEs) were fabricated via layer-by-layer (LBL) deposition of silver nanowires (AgNWs). First, the AgNWs were coated on (3-Mercaptopropyl)trimethoxysilane modified glass substrates. Then, multilayer AgNW films were obtained by using 1,3-propanedithiol as a linker via LBL deposition, which made it possible to control the optical transmittance and sheet resistance of multilayer thin films. Next, thermal annealing of AgNW films was performed in order to agent their electrical conductivity. AgNW monolayer films were characterized by UV-Vis spectrometer, field emission scanning electron microscopy, optical microscopy, atomic force microscopy and sheet resistance measurement by four-point probe method. The high performances were achieved with multilayer films, which provided sheet resistances of 9 Ω/sq, 11 Ω/sq with optical transmittances of 71%, 70% at 550 nm, which are comparable to commercial indium tin oxide (ITO) electrodes. Finally, an organic photovoltaic device was fabricated on the AgNW multilayer electrodes for demonstration purpose, which exhibited power conversion efficiency of 1.1%.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 497
Author(s):  
B. Tugba Camic ◽  
Hong In Jeong ◽  
M. Hasan Aslan ◽  
Arif Kosemen ◽  
Seongbeom Kim ◽  
...  

The authors wish to make the following corrections to this paper [...]


2015 ◽  
Vol 15 (10) ◽  
pp. 7997-8003 ◽  
Author(s):  
Sung-Jei Hong ◽  
Yong-Hoon Kim ◽  
Seung-Jae Cha ◽  
Yong-Sung Kim

This study investigates solution-processed transparent conductors with hybrid structure consisting of silver nanowires (AgNWs) and indium-tin-oxide nanoparticles (ITO-NPs) layers fabricated on polymeric flexible polyethylene terephthalate (PET) substrate. The transparent conductors had stacked structures of AgNWs/ITO-NPs on 125-μm-thick PET and ITO-NPs/AgNWs/ITO-NPs on 125-μm-thick PET, 188-μm-thick PET, or 700-μm-thick glass substrate, respectively. Successful integrations were possible on the substrates without any deformation or distortion. Sheet resistance of the triplelayered transparent conductor samples exhibits low values ranging from 22.41 Ω/□ to 22.99 Ω/□. Also, their optical transmittance exhibits high values ranging from 83.78 to 87.29% at 550 nm. The triple-layered transparent conductor showed a good thermal stability in terms of sheet resistance and optical transmittance against the high-temperature environment up to 250 °C. All the double and triple-layered transparent conductors fabricated on PET and glass substrates are so stable against the accelerated thermal aging from 110 °C to 130 °C, that ΔR/R0 and ΔT550/T0550 values exhibit less than 0.068 and 0.049, respectively. Furthermore, the layers are so flexible that ΔR/R0 of the layers on PET substrates is lower than 0.1 even at 4.0-mm bending. Especially, triple-layered transparent conductor on 125-μm-thick PET substrates exhibits ΔR/R0 value of 0.042 even at 4.0 mm bending. Thus, it can be concluded that the hybrid structures have the advantage of both thermal stability and flexibility for electrical and optical properties of transparent conductive electrode; which makes them highly applicable in flexible electronics.


2018 ◽  
Vol 775 ◽  
pp. 254-259
Author(s):  
Nathaniel de Guzman ◽  
Mary Donnabelle L. Balela

High aspect ratio silver nanowires (AgNWs) with an average length of 40 μm and average diameter of 88 nm were successfully synthesized using waste ethylene glycol as solvent and reducing agent. Silver nanowires with an average length and diameter of 32 μm and 122 nm, were produced after the third cycle of being reused. A transparent conducting film with a sheet resistance of 69 Ω/sq and optical transmittance of 91% was fabricated by Meyer rod coating an ink formulation of AgNWs dispersed in hydroxyethyl celullose (HEC)/methanol/deionized water. The low resistance of the AgNW networks was maintained even after 1000 bending cycles due to HEC acting as binder for the nanowires. The AgNWHEC transparent conductive electrode performed better than bare AgNWs and indium tin oxide (ITO) on polyethylene terephthalate (PET) substrate after several bending cycles. The AgNW-HEC electrode also showed excellent stability against corrosion.


2017 ◽  
Vol 890 ◽  
pp. 89-92 ◽  
Author(s):  
Nathaniel de Guzman ◽  
Joybelle Lopez ◽  
Magdaleno Vasquez Jr. ◽  
Mary Donnabelle Balela

High aspect ratio silver nanowires (Ag NWs) were successfully synthesized by CuCl2-mediated synthesis. Scanning electron microscopy (SEM) and X-Ray diffraction were employed to investigate the morphology and structure of the Ag products, respectively. Suspensions of Ag NW in ethanol were coated on glass substrates by Meyer rod coating to fabricate transparent conducting electrodes (TCE’s). The electrodes were then plasma treated at a power of 75 W. The effects of increasing plasma treatment time and oxygen exposure on the sheet resistance of the transparent electrodes were investigated. A sheet resistance of 8 Ω/sq with an optical transmittance of 80 % at 550nm was obtained for an electrode with a nanowire density of 0.18 mg/cm2 after 5 mins of plasma (Ar) exposure.


2011 ◽  
Vol 95 (8) ◽  
pp. 2126-2130 ◽  
Author(s):  
Ziyang Hu ◽  
Jianjun Zhang ◽  
Yan Liu ◽  
Zhihong Hao ◽  
Xiaodan Zhang ◽  
...  

2012 ◽  
Vol 49 (7) ◽  
pp. 072501
Author(s):  
李卫民 Li Weimin ◽  
郭金川 Guo Jinchuan ◽  
周彬 Zhou Bin

2019 ◽  
Vol 70 ◽  
pp. 162-166 ◽  
Author(s):  
Yiwei Zhang ◽  
Muhammad T. Sajjad ◽  
Oskar Blaszczyk ◽  
Arvydas Ruseckas ◽  
Luis A. Serrano ◽  
...  

2014 ◽  
Vol 997 ◽  
pp. 337-340
Author(s):  
Jian Guo Chai

Indium tin oxide (ITO) films were deposited on glass substrates by magnetron sputtering. Properties of ITO films showed a dependence on substrate temperature. With an increasing in substrate temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The results show that increasing substrate temperature remarkably improves the characteristics of the films. The sheet resistance of 10 Ω/sq and the maximum optical transmittance of 90% in the visible range with optimized conditions can be achicved. The results of experiment demonstrate that high-quality films have been achieved by this technique.


Sign in / Sign up

Export Citation Format

Share Document