Electroless Deposition of Silver Nanowires Using Waste Ethylene Glycol for Highly Transparent Flexible Conducting Electrodes

2018 ◽  
Vol 775 ◽  
pp. 254-259
Author(s):  
Nathaniel de Guzman ◽  
Mary Donnabelle L. Balela

High aspect ratio silver nanowires (AgNWs) with an average length of 40 μm and average diameter of 88 nm were successfully synthesized using waste ethylene glycol as solvent and reducing agent. Silver nanowires with an average length and diameter of 32 μm and 122 nm, were produced after the third cycle of being reused. A transparent conducting film with a sheet resistance of 69 Ω/sq and optical transmittance of 91% was fabricated by Meyer rod coating an ink formulation of AgNWs dispersed in hydroxyethyl celullose (HEC)/methanol/deionized water. The low resistance of the AgNW networks was maintained even after 1000 bending cycles due to HEC acting as binder for the nanowires. The AgNWHEC transparent conductive electrode performed better than bare AgNWs and indium tin oxide (ITO) on polyethylene terephthalate (PET) substrate after several bending cycles. The AgNW-HEC electrode also showed excellent stability against corrosion.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nathaniel de Guzman ◽  
Mary Donnabelle L. Balela

High aspect ratio silver (Ag) nanowires with an average length of 25.4 μm and diameter of 102.8 nm were successfully prepared by electroless deposition in hot ethylene glycol (160°C) for 1 h in the presence of PVP. It was found that both PVP concentration and molecular weight significantly influence the morphology and yield of Ag nanowires in solution. Using PVP MW = 55,000, addition of lower amounts of PVP led to formation of large irregularly shaped Ag particles together with a few rod-like structures. Increasing PVP concentration generally resulted in longer and thinner Ag nanowires. On the other hand, low molecular weight PVP produced spherical Ag particles even at high PVP concentration. Ag nanowire flexible transparent conducting electrodes attained a sheet resistance of about 92.5 Ω/sq at an optical transmittance of about 79.6% without any heat treatment. In addition, no significant change in optical and electrical properties was observed after several cycles of bending and adhesion test.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 46 ◽  
Author(s):  
B. Tugba Camic ◽  
Hong In Jeong ◽  
M. Hasan Aslan ◽  
Arif Kosemen ◽  
Seongbeom Kim ◽  
...  

Solution processed transparent conductive electrodes (TCEs) were fabricated via layer-by-layer (LBL) deposition of silver nanowires (AgNWs). First, the AgNWs were coated on (3-Mercaptopropyl)trimethoxysilane modified glass substrates. Then, multilayer AgNW films were obtained by using 1,3-propanedithiol as a linker via LBL deposition, which made it possible to control the optical transmittance and sheet resistance of multilayer thin films. Next, thermal annealing of AgNW films was performed in order to agent their electrical conductivity. AgNW monolayer films were characterized by UV-Vis spectrometer, field emission scanning electron microscopy, optical microscopy, atomic force microscopy and sheet resistance measurement by four-point probe method. The high performances were achieved with multilayer films, which provided sheet resistances of 9 Ω/sq, 11 Ω/sq with optical transmittances of 71%, 70% at 550 nm, which are comparable to commercial indium tin oxide (ITO) electrodes. Finally, an organic photovoltaic device was fabricated on the AgNW multilayer electrodes for demonstration purpose, which exhibited power conversion efficiency of 1.1%.


2015 ◽  
Vol 15 (10) ◽  
pp. 7997-8003 ◽  
Author(s):  
Sung-Jei Hong ◽  
Yong-Hoon Kim ◽  
Seung-Jae Cha ◽  
Yong-Sung Kim

This study investigates solution-processed transparent conductors with hybrid structure consisting of silver nanowires (AgNWs) and indium-tin-oxide nanoparticles (ITO-NPs) layers fabricated on polymeric flexible polyethylene terephthalate (PET) substrate. The transparent conductors had stacked structures of AgNWs/ITO-NPs on 125-μm-thick PET and ITO-NPs/AgNWs/ITO-NPs on 125-μm-thick PET, 188-μm-thick PET, or 700-μm-thick glass substrate, respectively. Successful integrations were possible on the substrates without any deformation or distortion. Sheet resistance of the triplelayered transparent conductor samples exhibits low values ranging from 22.41 Ω/□ to 22.99 Ω/□. Also, their optical transmittance exhibits high values ranging from 83.78 to 87.29% at 550 nm. The triple-layered transparent conductor showed a good thermal stability in terms of sheet resistance and optical transmittance against the high-temperature environment up to 250 °C. All the double and triple-layered transparent conductors fabricated on PET and glass substrates are so stable against the accelerated thermal aging from 110 °C to 130 °C, that ΔR/R0 and ΔT550/T0550 values exhibit less than 0.068 and 0.049, respectively. Furthermore, the layers are so flexible that ΔR/R0 of the layers on PET substrates is lower than 0.1 even at 4.0-mm bending. Especially, triple-layered transparent conductor on 125-μm-thick PET substrates exhibits ΔR/R0 value of 0.042 even at 4.0 mm bending. Thus, it can be concluded that the hybrid structures have the advantage of both thermal stability and flexibility for electrical and optical properties of transparent conductive electrode; which makes them highly applicable in flexible electronics.


2018 ◽  
Vol 768 ◽  
pp. 75-84 ◽  
Author(s):  
Tian Rui Chen ◽  
Hai Feng Wang ◽  
Hui Yang ◽  
Xing Zhong Guo

Silver nanowires with controllable and high length-diameter ratio were prepared by using the reductibility of ethylene glycol under high temperature and selective adsorption of PVP. AgNO3, ethylene glycol, PVP and CuCl2was used as the silver source, the reductant, the capping agent and the ion additives, respectively. The effects of centrifugal rate, silver ions' concentration, AgNO3adding rate on the morphology of silver nanowires were investigated by SEM, XRD, TEM and other technologies. The results show that the optimal centrifugal rate is 2000n/s, the better silver ions’ concentration is 6.55 mg/mL, and the best rate of adding AgNO3is 6 ml/min. The silver nanowires with an average diameter of 74.9 nm, the average length of 45.5μm and its length-diameter ratio of 607.5 are obtained. The silver nanowires with good morphology and high length-diameter ratio are adjustable, which is suitable for the preparation of OLED transparent film electrode materials, and other conductive materials.


Nanophotonics ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 180-195 ◽  
Author(s):  
Suprem R. Das ◽  
Sajia Sadeque ◽  
Changwook Jeong ◽  
Ruiyi Chen ◽  
Muhammad A. Alam ◽  
...  

Abstract Although transparent conductive oxides such as indium tin oxide (ITO) are widely employed as transparent conducting electrodes (TCEs) for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs), copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide) have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.


Author(s):  
Xingzhen Yan ◽  
Bo Li ◽  
Kaian Song ◽  
Fan Yang ◽  
Yanjie Wang ◽  
...  

Abstract We have prepared an ultra-thin flexible transparent conductive electrode with high folding endurance composed of randomly arranged silver nanowires (AgNWs) embedded in polydimethylsiloxane (PDMS). A simple preparation method was performed to connect a glass substrate coated with a AgNW network and a glass substrate coated with PDMS. The glass substrate was then removed after the PDMS solidified, and the AgNW–PDMS composite film was peeled off. Moreover, the problem of the high contact resistance caused by the random arrangement of AgNWs was solved by the local joule heat generated by applying voltage to both sides of the AgNW–PDMS composite structure to weld the overlapping AgNWs. The sheet resistance (Rs ) of AgNW–PDMS composite films with different AgNW deposition concentrations decreased by 46.4%–75.8% through this electro-sintering treatment. The embedded structure of the AgNW–PDMS composite ensures better voltage resistance and environmental stability under high temperature and humidity conditions compared with a AgNW network attached to a glass substrate. Additionally, the substrate-free, excellent elasticity and high resilience characteristics resulted in the Rs value of the same composite electrode only increasing by 2.9 ohm/sq after folding four times. The advantage of the metal thermal conductivity makes the joule heat generated by electric injection rapidly diffuse and dissipate in the AgNW-based transparent heater with faster response time and smaller voltage drive than indium tin oxide.


2011 ◽  
Vol 284-286 ◽  
pp. 2182-2186 ◽  
Author(s):  
Hua Fu Zhang ◽  
Han Fa Liu ◽  
Chang Kun Yuan

Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) and aluminium-doped zinc oxide (ZnO:Al) thin films were deposited on glass substrates by direct current (DC) magnetron sputtering at room temperature. The crystallinity of ZnO:Zr and ZnO:Al thin films increases as the target-to-substrate distance decreases, and the crystallinity of ZnO:Zr films is found to be always better than that of ZnO:Al films prepared under the same deposition conditions. As the target-to-substrate distance decreases, the resistivity of both film types decreases greatly while the optical transmittance does not change much with the variation of the distance. When target-to-substrate distance is 4.1 cm, the lowest resistivity of 6.0×10-4Ω·cm and 5.7×10-4Ω·cm was obtained for ZnO:Zr and ZnO:Al films, respectively. The figure of merit arrived at a maximum value of 3.98×10-2Ω for ZnO:Zr films lower than 5×10-2Ω for ZnO:Al films.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jhon L. Cuya Huaman ◽  
Iori Urushizaki ◽  
Balachandran Jeyadevan

Cu nanowire (NW) is a promising cost-benefit conducting material that could be considered for the development of transparent conducting films (TCF). However, the development of Cu NW as an alternating material for Ag or Au is not only limited by its stability in atmospheric conditions in the nanometer range but also due to the nonavailability of a simple synthetic route to produce them in high yields and in large-scale. Here, a scheme to synthesize Cu NWs by reducing Cu nitrate in a Cl− ion-polyvinylpyrrolidine- (PVP-) ethylene glycol (EG) system is proposed. Cu NWs with average diameter around 60 nm and average length of about 40 μm was obtained under optimized experimental conditions. Furthermore, the formation of Cu NW was elucidated to be through the progression of the following sequential reduction steps: at first, Cu ions underwent partial reduction to form spherical Cu2O. Then, the spherical Cu2O particles were redissolved and reduced to metallic Cu0 atoms that subsequently formed the Cu seeds. Thereafter, Cu seeds underwent etching to form multiply-twinned particles (MTP). Finally, these Cu MTP grew unidirectionally to form metallic Cu NWs.


1996 ◽  
Vol 426 ◽  
Author(s):  
T. J. Coutts ◽  
X. Wu ◽  
W. P. Mulligan

AbstractWe are examining various spinel-structured thin films (e.g., Cd2SnO4, Zn2SnO4) to develop higher-quality transparent conducting oxides (TCO) than more conventional materials such as indium tin oxide. Here, we report on cadmium indate (CdIn2O4, CIO), which is another member of this family. Thin films of CIO were deposited by radio-frequency (RF) magnetron sputtering, from an oxide target, onto borosilicate glass substrates. The variables included the substrate temperature, sputtering gas composition, and pressure. Film properties were measured before and after heat treatment. Characterization involved Hall effect measurements, optical and infrared spectrophotometry, X-ray diffraction, and atomic-force microscopy. Film resistivities as low as 2.3x10-4Ω cm were achieved for a film thickness of 0.55 μm. The transmittance was 90% in the visible region of the spectrum, without correction for substrate losses and without an anti-reflection coating. The plasma resonance occurred at longer wavelengths than for other materials and this, with a bandgap of approximately 3.1 eV, presents a wide window for optical transmittance. The highest mobility was 54 cm2 V-s-1 and the highest carrier concentration was 7.5x1020 cm-3.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Jinseon You ◽  
Sung Min Lee ◽  
Hong-Sik Eom ◽  
Suk Tai Chang

Transparent conducting electrodes (TCEs) formed with silver nanowires (AgNWs) have attracted attention as substitutes for indium tin oxide (ITO). However, the randomly deposited AgNW film performs poorly in terms of the transmittance and sheet resistance to serve as a substitute of ITO. To improve the performance of the AgNW film, we fabricated a grid-patterned AgNW by modifying the surface energy of the substrate. The hydrophobized surface was selectively etched by UV light through a quartz chrome mask, and a suspension of AgNWs in isopropyl alcohol/ethylene glycol mixture was coated on the substrate by a meniscus dragging deposition process. The grid-patterned AgNW film has a lower percolation threshold and a 13% higher figure-of-merit value compared to the randomly deposited AgNW film. The transparent thin films with a grid structure of AgNWs exhibit the high electrical conductivity with a sheet resistance of 33 Ohm/sq at a transmittance of 92.7% (λ = 550 nm).


Sign in / Sign up

Export Citation Format

Share Document