scholarly journals Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 93 ◽  
Author(s):  
In Woo Park ◽  
Kyung Won Kim ◽  
Yunhwa Hong ◽  
Hyun Ji Yoon ◽  
Yonghun Lee ◽  
...  

Recently, biocompatible energy harvesting devices have received a great deal of attention for biomedical applications. Among various biomaterials, viruses are expected to be very promising biomaterials for the fabrication of functional devices due to their unique characteristics. While other natural biomaterials have limitations in mass-production, low piezoelectric properties, and surface modification, M13 bacteriophages (phages), which is one type of virus, are likely to overcome these issues with their mass-amplification, self-assembled structure, and genetic modification. Based on these advantages, many researchers have started to develop virus-based energy harvesting devices exhibiting superior properties to previous biomaterial-based devices. To enhance the power of these devices, researchers have tried to modify the surface properties of M13 phages, form biomimetic hierarchical structures, control the dipole alignments, and more. These methods for fabricating virus-based energy harvesting devices can form a powerful strategy to develop high-performance biocompatible energy devices for a wide range of practical applications in the future. In this review, we discuss all these issues in detail.

2021 ◽  
Vol 12 ◽  
pp. 151-171
Author(s):  
Jing Han ◽  
Nuo Xu ◽  
Yuchen Liang ◽  
Mei Ding ◽  
Junyi Zhai ◽  
...  

The development of industry and of the Internet of Things (IoTs) have brought energy issues and huge challenges to the environment. The emergence of triboelectric nanogenerators (TENGs) has attracted wide attention due to their advantages, such as self-powering, lightweight, and facile fabrication. Similarly to paper and other fiber-based materials, which are biocompatible, biodegradable, environmentally friendly, and are everywhere in daily life, paper-based TENGs (P-TENGs) have shown great potential for various energy harvesting and interactive applications. Here, a detailed summary of P-TENGs with two-dimensional patterns and three-dimensional structures is reported. P-TENGs have the potential to be used in many practical applications, including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2797 ◽  
Author(s):  
Chongsei Yoon ◽  
Buil Jeon ◽  
Giwan Yoon

In this paper, we present zinc oxide (ZnO)-based flexible harvesting devices employing commercially available, cost-effective thin aluminum (Al) foils as substrates and conductive bottom electrodes. From the device fabrication point of view, Al-foils have a relatively high melting point, allowing for device processing and annealing treatments at elevated temperatures, which flexible plastic substrate materials cannot sustain because of their relatively low melting temperatures. Moreover, Al-foil is a highly cost-effective, commercially available material. In this work, we fabricated and characterized various kinds of multilayered thin-film energy harvesting devices, employing Al-foils in order to verify their device performance. The fabricated devices exhibited peak-to-peak output voltages ranging from 0.025 V to 0.140 V. These results suggest that it is feasible to employ Al-foils to fabricate energy-efficient energy harvesting devices at relatively high temperatures. It is anticipated that with further process optimization and device integration, device performance can be further improved.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 567
Author(s):  
Jin-Woo Oh ◽  
Dong-Wook Han

This Special Issue highlights the recent developments and future directions of virus-based nanomaterials and nanostructures in energy and biomedical applications. The virus-based biomimetic materials formulated using innovative ideas presented herein are characterized for the applications of biosensors and nanocarriers. The research contributions and trends based on virus-based materials, covering energy-harvesting devices to tissue regeneration over the last two decades, are described and discussed.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


Author(s):  
Ugur Aridogan ◽  
Ipek Basdogan ◽  
Alper Erturk

Vibration-based energy harvesting using cantilevered piezoelectric beam has been extensively studied over the last decade. In this study, as an alternative to resonant piezoelectric cantilevers, we studied multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates. Analytical electroelastic model of the multiple patch-based piezoelectric harvesters attached on a thin plate is provided based on distributed-parameter modeling approach for series and parallel configurations of the patches. An experimental setup is built with series-configuration of double patch-based harvesters attached on the surfaces of all-four-edges clamped (CCCC) rectangular aluminum plate. Analytical simulations and experimental validations of power generation of the harvesters are performed in a case study. The experimental and analytical frequency response functions (FRF) relating voltage output and vibration response to force input are obtained. The analytical model is validated by comparing analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. The harvested power output across the various resistive loads is explored with a focus on the first four modes of the aluminum plate. Experimental and analytical results are shown to be in agreement for multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates.


2008 ◽  
Vol 20 (5) ◽  
pp. 495-504 ◽  
Author(s):  
Jeffrey L. Kauffman ◽  
George A. Lesieutre

Piezoelectric energy harvesting devices are an attractive approach to providing remote wireless power sources. They operate by converting available vibration energy and storing it as electrical energy. Currently, most devices rely on mechanical excitation near their resonance frequency, so a low-order model which computes a few indicators of device performance is a critical design tool. Such a model, based on the assumed modes method, develops equations of motion to provide rapid computations of key device parameters, such as the natural frequencies, mode shapes, and electro-mechanical coupling coefficients. The model is validated with a comparison of its predictions and experimental data.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 995
Author(s):  
Xiaoyu Chen ◽  
Xuhui Zhang ◽  
Luyang Chen ◽  
Yan Guo ◽  
Fulin Zhu

To improve the energy harvesting performance of an energy harvester, a novel bistable piezoelectric energy harvester with variable potential well (BPEH-V) is proposed by introducing a spring to the external magnet from a curve-shaped beam bistable harvester (CBH-C). First, finite element simulation was performed in COMSOL software to validate that the curved beam configuration was superior to the straight beam in power generation performance, which benefits energy harvesting. Moreover, the nonlinear magnetic model was obtained by using the magnetic dipoles method, and the nonlinear restoring force model of the curve-shaped beam was acquired based on fitting the experimental data. The corresponding coupled governing equations were derived by using generalized Hamilton’s principle, the dynamic responses were obtained by solving the coupling equations with the ode45 method. Finally, the numerical simulations showed that the proposed harvester can make interwell oscillations easier due to the spring being efficiently introduced to pull down the potential barrier compared with the conventional bistable harvester. Spring stiffness has a great impact on characteristics of the system, and a suitable stiffness contributes to realize large-amplitude interwell oscillations over a wide range of excitation, especially in the low excitation condition.


Sign in / Sign up

Export Citation Format

Share Document