scholarly journals A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2797 ◽  
Author(s):  
Chongsei Yoon ◽  
Buil Jeon ◽  
Giwan Yoon

In this paper, we present zinc oxide (ZnO)-based flexible harvesting devices employing commercially available, cost-effective thin aluminum (Al) foils as substrates and conductive bottom electrodes. From the device fabrication point of view, Al-foils have a relatively high melting point, allowing for device processing and annealing treatments at elevated temperatures, which flexible plastic substrate materials cannot sustain because of their relatively low melting temperatures. Moreover, Al-foil is a highly cost-effective, commercially available material. In this work, we fabricated and characterized various kinds of multilayered thin-film energy harvesting devices, employing Al-foils in order to verify their device performance. The fabricated devices exhibited peak-to-peak output voltages ranging from 0.025 V to 0.140 V. These results suggest that it is feasible to employ Al-foils to fabricate energy-efficient energy harvesting devices at relatively high temperatures. It is anticipated that with further process optimization and device integration, device performance can be further improved.

2018 ◽  
Vol 8 (7) ◽  
pp. 1127 ◽  
Author(s):  
Chongsei Yoon ◽  
Buil Jeon ◽  
Giwan Yoon

In this paper, we present a study of various ZnO/SiO2-stacked thin film structures for flexible micro-energy harvesting devices. Two groups of micro-energy harvesting devices, SiO2/ZnO/SiO2 micro-energy generators (SZS-MGs) and ZnO/SiO2/ZnO micro-energy generators (ZSZ-MGs), were fabricated by stacking both SiO2 and ZnO thin films, and the resulting devices were characterized. With a particular interest in the fabrication of flexible devices, all the ZnO and SiO2 thin films were deposited on indium tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates using a radio frequency (RF) magnetron sputtering technique. The effects of the thickness and/or position of the SiO2 films on the device performance were investigated by observing the variations of output voltage in comparison with that of a control sample. As a result, compared to the ZnO single-layer device, all the ZSZ-MGs showed much better output voltages, while all the SZS-MG showed only slightly better output voltages. Among the ZSZ-MGs, the highest output voltages were obtained from the ZSZ-MGs where the SiO2 thin films were deposited using a deposition power of 150 W. Overall, the device performance seems to depend significantly on the position as well as the thickness of the SiO2 thin films in the ZnO/SiO2-stacked multilayer structures, in addition to the processing conditions.


Aerospace ◽  
2020 ◽  
Vol 7 (7) ◽  
pp. 93
Author(s):  
Hamidreza Masoumi ◽  
Hamid Moeenfard ◽  
Hamed Haddad Khodaparast ◽  
Michael I. Friswell

The current research investigates the novel approach of coupling separate energy harvesters in order to scavenge more power from a stochastic point of view. To this end, a multi-body system composed of two cantilever harvesters with two identical piezoelectric patches is considered. The beams are interconnected through a linear spring. Assuming a stochastic band limited white noise excitation of the base, the statistical properties of the mechanical response and those of the generated voltages are derived in closed form. Moreover, analytical models are derived for the expected value of the total harvested energy. In order to maximize the expected generated power, an optimization is performed to determine the optimum physical and geometrical characteristics of the system. It is observed that by properly tuning the harvester parameters, the energy harvesting performance of the structure is remarkably improved. Furthermore, using an optimized energy harvester model, this study shows that the coupling of the beams negatively affects the scavenged power, contrary to the effect previously demonstrated for harvesters under harmonic excitation. The qualitative and quantitative knowledge resulting from this analysis can be effectively employed for the realistic design and modelling of coupled multi-body structures under stochastic excitations.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


Author(s):  
Christopher Green ◽  
Karla M. Mossi ◽  
Robert G. Bryant

Wireless sensors are an emerging technology that has the potential to revolutionize the monitoring of simple and complex physical systems. Prior research has shown that one of the biggest issues with wireless sensors is power management. A wireless sensor is simply not cost effective unless it can maintain long battery life or harvest energy from another source. Piezoelectric materials are viable conversion mechanisms because of their inherent ability to covert vibrations to electrical energy. Currently a wide variety of piezoelectric materials are available and the appropriate choice for sensing, actuating, or harvesting energy depends on their characteristics and properties. This study focuses on evaluating and comparing three different types of piezoelectric materials as energy harvesting devices. The materials utilized consisted on PZT 5A, a single crystal PMN 32%PT, and a PZT 5A composite called Thunder. These materials were subjected to a steady sinusoidal vibration provided by a shaker at different power levels. Gain of the devices was measured at all levels as well as impedance in a range of frequencies was characterized. Results showed that the piezoelectric generator coefficient, g33, predicts the overall power output of the materials as verified by the experiments. These results constitute a baseline for an energy harvesting system that will become the front end of a wireless sensor network.


2008 ◽  
Vol 20 (5) ◽  
pp. 495-504 ◽  
Author(s):  
Jeffrey L. Kauffman ◽  
George A. Lesieutre

Piezoelectric energy harvesting devices are an attractive approach to providing remote wireless power sources. They operate by converting available vibration energy and storing it as electrical energy. Currently, most devices rely on mechanical excitation near their resonance frequency, so a low-order model which computes a few indicators of device performance is a critical design tool. Such a model, based on the assumed modes method, develops equations of motion to provide rapid computations of key device parameters, such as the natural frequencies, mode shapes, and electro-mechanical coupling coefficients. The model is validated with a comparison of its predictions and experimental data.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2055 ◽  
Author(s):  
Hiroki Kurita ◽  
Kenichi Katabira ◽  
Yu Yoshida ◽  
Fumio Narita

Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe–Co magnetostrictive materials and fabricated Fe–Co magnetostrictive fiber integrated shoes. We revealed that Fe–Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe–Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe–Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2697
Author(s):  
Fatemeh Mokhtari ◽  
Mahnaz Shamshirsaz ◽  
Masoud Latifi ◽  
Javad Foroughi

The demands for wearable technologies continue to grow and novel approaches for powering these devices are being enabled by the advent of new energy materials and novel manufacturing strategies. In addition, decreasing the energy consumption of portable electronic devices has created a huge demand for the development of cost-effective and environment friendly alternate energy sources. Energy harvesting materials including piezoelectric polymer with its special properties make this demand possible. Herein, we develop a flexible and lightweight nanogenerator package based on polyvinyledene fluoride (PVDF)/LiCl electrospun nanofibers. The piezoelectric performance of the developed nanogenator is investigated to evaluate effect of the thickness of the as-spun mat on the output voltage using a vibration and impact test. It is found that the output voltage increases from 1.3 V to 5 V by adding LiCl as additive into the spinning solution compared with pure PVDF. The prepared PVDF/LiCl nanogenerator is able to generate voltage and current output of 3 V and 0.5 μA with a power density output of 0.3 μW cm−2 at the frequency of 200 Hz. It is found also that the developed nanogenerator can be utilized as a sensor to measure temperature changes from 30 °C to 90 °C under static pressure. The developed electrospun temperature sensor showed sensitivity of 0.16%/°C under 100 Pa pressure and 0.06%/°C under 220 Pa pressure. The obtained results suggested the developed energy harvesting textiles have promising applications for various wearable self-powered electrical devices and systems.


2018 ◽  
Vol 30 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Mohammad Reza Zamani Kouhpanji

This study represents effects of an elastic support on the power generation and storage capability of piezoelectric energy harvesting devices. The governing equations were derived and solved for a piezoelectric energy harvesting device made of elastic support, multilayer piezoelectric beam, and a proof mass at its free end. Furthermore, a Thevenin model for a rechargeable battery was considered for storage of the produced power of the piezoelectric energy harvesting device. Analyzing the time-domain and frequency-domain responses of the piezoelectric energy harvesting device on an elastic support shows that the elastic deformation of the support significantly reduces the power generation and storage capability of the device. It was also found that the power generation and storage capability of the piezoelectric energy harvesting device can be enhanced by choosing appropriate physical parameters of the piezoelectric beam even if the elastic properties of the support are poor relative to elastic properties of the piezoelectric beam. These results provide an insightful understanding for designing and material selection for the support in order to reach the highest possible power generation and storage capability for piezoelectric energy harvesting devices.


Sign in / Sign up

Export Citation Format

Share Document