scholarly journals Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 592 ◽  
Author(s):  
Eveline Verleysen ◽  
Nadia Waegeneers ◽  
Frédéric Brassinne ◽  
Sandra De Vos ◽  
Isaac Ojea Jimenez ◽  
...  

E171 (titanium dioxide) is a food additive that has been authorized for use as a food colorant in the European Union. The application of E171 in food has become an issue of debate, since there are indications that it may alter the intestinal barrier. This work applied standardized and validated methodologies to characterize representative samples of 15 pristine E171 materials based on transmission electron microscopy (TEM) and single-particle inductively coupled plasma mass spectrometry (spICP-MS). The evaluation of selected sample preparation protocols allowed identifying and optimizing the critical factors that determine the measurement of the particle size distribution by TEM. By combining optimized sample preparation with method validation, a significant variation in the particle size and shape distributions, the crystallographic structure (rutile versus anatase), and the physicochemical form (pearlescent pigments versus anatase and rutile E171) was demonstrated among the representative samples. These results are important for risk assessment of the E171 food additive and can contribute to the implementation of the European Food Safety Authority (EFSA) guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain.

Clay Minerals ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 593-606 ◽  
Author(s):  
A. Nkalih Mefire ◽  
A. Njoya ◽  
R. Yongue Fouateu ◽  
J.R. Mache ◽  
N.A. Tapon ◽  
...  

AbstractThirty clay samples collected from three hills in Koutaba (west Cameroon) were characterized in order to evaluate their potential use as raw materials for ceramics. After preliminary mineralogical identification by X-ray diffraction, three representative samples from the three different hills, referred to hereafter as K1M, K2M and K3M, were selected for further investigation by X-ray fluorescence, plasticity, granularity and thermogravimetric analysis. The main clay minerals are kaolinite (32–51%) and illite (up to 12%). Additional major phases are quartz (32–52%), goethite (6–7%) and feldspars (0–4%). The chemical composition showed variable amounts of SiO2(60–72%), Al2O3(15–20%) and Fe2O3(1–9%), in accordance with the quartz abundance in all of the samples studied. The particle-size distribution showed a large proportion of silty fraction (64–88%) with moderate sandy (9–19%) and clayey fractions ( < 5% for K2M, 12% for K1M and 20% for K3M). All of the clays showed moderate plasticity-index values (8–11%). Because of these characteristics, K1M and K3M may be suitable for use in common bricks and hollow ceramic products. Sieving or the addition of ball clays is recommended to increase the plasticity of sample K2M for use in common bricks.


Author(s):  
Yusup Hendronursito ◽  
Muhammad Amin ◽  
Slamet Sumardi ◽  
Roniyus Marjunus ◽  
Frista Clarasati ◽  
...  

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.


BioTech ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 10
Author(s):  
Michael F. Eckerstorfer ◽  
Marcin Grabowski ◽  
Matteo Lener ◽  
Margret Engelhard ◽  
Samson Simon ◽  
...  

An intensely debated question is whether or how a mandatory environmental risk assessment (ERA) should be conducted for plants obtained through novel genomic techniques, including genome editing (GE). Some countries have already exempted certain types of GE applications from their regulations addressing genetically modified organisms (GMOs). In the European Union, the European Court of Justice confirmed in 2018 that plants developed by novel genomic techniques for directed mutagenesis are regulated as GMOs. Thus, they have to undergo an ERA prior to deliberate release or being placed on the market. Recently, the European Food Safety Authority (EFSA) published two opinions on the relevance of the current EU ERA framework for GM plants obtained through novel genomic techniques (NGTs). Regarding GE plants, the opinions confirmed that the existing ERA framework is suitable in general and that the current ERA requirements need to be applied in a case specific manner. Since EFSA did not provide further guidance, this review addresses a couple of issues relevant for the case-specific assessment of GE plants. We discuss the suitability of general denominators of risk/safety and address characteristics of GE plants which require particular assessment approaches. We suggest integrating the following two sets of considerations into the ERA: considerations related to the traits developed by GE and considerations addressing the assessment of method-related unintended effects, e.g., due to off-target modifications. In conclusion, we recommend that further specific guidance for the ERA and monitoring should be developed to facilitate a focused assessment approach for GE plants.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Shumin Duan ◽  
Ying Liu ◽  
Yun Wang

Abstract Objective Up to 44% of particulates of food-grade titanium dioxide (TiO2) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven’t been fully understood yet. This study is aimed to study the effect of two kinds of TiO2 nanoparticles (TiO2 NPs and TiO2 MPs) on intestinal barrier functions, to reveal the combined effect of TiO2 NPs and Lipopolysaccharide (LPS) on intestinal barrier. Methods Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO2-mixed feed (containing 1% (mass fraction, w/w) TiO2 NPs or TiO2 MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO2, the intestinal barrier functions and the inflammatory response were evaluated. Results Both TiO2 notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO2 NPs led to reduced feed consumption, TiO2 MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn’t change in both TiO2 exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO2 +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO2 NPs and LPS, but there are complicated interactions between TiO2 MPs and LPS. Conclusion Long-term intake of food additive TiO2 could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO2 and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO2 NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO2 being ingested with feed.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3941
Author(s):  
Giorgia Germini ◽  
Leena Peltonen

The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth physicochemical characterization was made, including solid-state determination, particle size and size deviation analysis, film appearance evaluation, determination of weight variation, thickness, folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration was first optimized with drug-free formulations. The best mechanical film properties were achieved for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies, three different drug levels were tested. With the optimum concentration, films were flexible and homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals remained in the nano size range in the polymer films, particle sizes being in all film formulations from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted polymer films, the physicochemical behavior and pharmaceutical performance of the films were very similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a very promising option for the production of immediate-release improved- solubility formulations.


Author(s):  
Elisabet Navarro-Tapia ◽  
Mariona Serra-Delgado ◽  
Lucía Fernández-López ◽  
Montserrat Meseguer-Gilabert ◽  
María Falcón ◽  
...  

Kohl is a traditional cosmetic widely used in Asia and Africa. In recent years, demand for kohl-based eyelids and lipsticks has increased in Europe, linked to migratory phenomena of populations from these continents. Although the European legislation prohibits the use of heavy metals in cosmetics due to the harmful effects to human health, particularly to pregnant women and children, these elements are still present in certain products. The European Union recommended levels are Pb < 20 ppm, As < 5 ppm, Cd < 5 ppm, Sb < 100 ppm, and Ni < 200 ppm. In Germany, levels are more restrictive: Pb < 2 ppm, As < 0.5 ppm, Cd < 0.1 ppm, Sb < 0.5 ppm, and Ni < 10 ppm. Here, we analyzed 12 kohl-based cosmetics in different presentations (powder, paste, and pencil) that were purchased in Spanish and German local shops. An inductively coupled plasma optical emission spectrophotometer was used to identify toxic elements and heavy metals. Levels of Pb ranged between 1.7 and 410,000 ppm in six of the study samples, four of which had levels above the recommended limit of at least two heavy metals. Arsenic (a carcinogenic element) values were within the range allowed by the EU in only 58% of the studied samples. Moreover, two products doubled this limit, reaching levels of 9.2 and 12.6 ppm. In one of the products, cadmium, related to toxic keratitis, was four times higher (20.7 ppm) than that allowed, while in two other products, these limits were doubled (11.8 and 12.7 ppm). Our results indicate the need to supervise the manufacture of kohl-based traditional products and the analysis of their composition prior distribution in European countries.


Toxics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 133
Author(s):  
Ana Macías-Montes ◽  
Manuel Zumbado ◽  
Octavio P. Luzardo ◽  
Ángel Rodríguez-Hernández ◽  
Andrea Acosta-Dacal ◽  
...  

Dry feed for pets lacks specific legislation regarding maximum residue limits for inorganic elements. The aim of the present study was to determine the content of 43 inorganic elements in dog and cat feed, studying whether there were differences according to the supposed quality of the food and performing the risk assessment for health. Thirty-one and thirty packages of pelleted dry food for cats and dogs, respectively, were analyzed. After acidic microwave-assisted digestion, elements were detected and quantified by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In general, we did not observe important differences in the content of elements according to the supposed quality of the brand. Among trace elements, selenium and manganese are above the dietary reference value. Arsenic and mercury showed the highest acute hazard indexes, which make them risk factors for the health of dogs and cats. Aluminum, uranium, antimony and vanadium contents were above the toxic reference value and showed the highest acute hazard indexes. It is necessary to improve the legislation regarding the food safety of pets, for their health and to protect the rights of consumers.


Sign in / Sign up

Export Citation Format

Share Document