scholarly journals Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2082 ◽  
Author(s):  
Salem S. Salem ◽  
Ehab F. EL-Belely ◽  
Gniewko Niedbała ◽  
Maryam M. Alnoman ◽  
Saad El-Din Hassan ◽  
...  

An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV–vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13–40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (−19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25–100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.

2021 ◽  
Vol 41 (03) ◽  
pp. 393-399
Author(s):  
Parwin Jalal Jalil

Spillage of protoscoleces within hydatid fluid during surgery for hydatid cyst is the main reason for its recurrence. Therefore, to inactivate the protoscoleces, various scolicidal substances have been tested. However, novel and more efficient agents are needed owing to several associated complications. This study focused on the effects of green synthetic Silver Nanoparticles (AgNPs) from Zizyphus spina- christi leaves on Echinococcus granulosus protoscoleces. Also, to evaluate the blood compatibility of Ag NPs. The Ag NPs were identified by ultraviolet-visible (UV-Visible) spectrophotometer, X-ray diffraction (XRD), Scanning electron microscopy imaging, and Energy-dispersive X-ray spectroscopy (EDX). Hydatid fluid was aspirated aseptically from cysts of infected sheep liver. The protoscoleces were exposed to Ag NPs at several concentrations. Also, scanning electron microscopy for ultrastructural changes and in vitro erythrocytes lysis was performed. The Ag NPs were spherical; the particles' size reached 50 nm, and presented a surface plasmon peak around 460 nm. The current study's findings indicated the powerful in vitro scolicidal efficacy of the green biosynthesized AgNPs. Several morphological alterations were observed on the protoscoleces by optical and scanning electron microscopy. Lysis of RBCs at different doses of Ag NPs was significantly (P≤0.05) less than the positive control value, thus proposing its biocompatibility. This work suggests that chemicals like polyphenols present in the extract of Z. spina- christi act as reducing and stabilizers agents to create Ag NPs Nevertheless, further investigations are needed to investigate the Ag NPs scolicidial effects in animal models.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed A. Abdellah ◽  
Sotiris K. Hadjikakou ◽  
Nick Hadjiliadis ◽  
Maciej Kubicki ◽  
Thomas Bakas ◽  
...  

Organotin(IV) complexes with o- or p-hydroxybenzoic acids (o-H2BZAor p-H2BZA) of formulae[R2Sn(HL)2](whereH2L= o-H2BZAand R = Me- (1),n-Bu- (2));[R3Sn(HL)](whereH2L= o-H2BZAand R =n-Bu- (3), Ph- (4) orH2L= p-H2BZAand R =n-Bu- (5), Ph- (6)) were synthesized by reacting a methanolic solution of di- and triorganotin(IV) compounds with an aqueous solution of the ligand (o-H2BZAor p-H2BZA) containing equimolar amounts of potassium hydroxide. The complexes were characterized by elemental analysis, FT-IR, Far-IR, TGA-DTA, FT-Raman, Mössbauer spectroscopy,H1,S119n-NMR, UV/Vis spectroscopy, and Mass spectroscopy. The X-ray crystal structures of complexes1and2have also been determined. Finally, the influence of these complexes1–6upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically studied and the results showed that triorganotin(IV) complex6has the lowestIC50value. Also complexes1–6were studied for their in vitro cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, and the results showed that the complexes have high activity against these cell lines with triphenyltin((IV) complex4to be the most active one.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 341
Author(s):  
Islam Lashin ◽  
Amr Fouda ◽  
Adil A. Gobouri ◽  
Ehab Azab ◽  
Zuhair M. Mohammedsaleh ◽  
...  

The in vitro callus induction of Solanum incanum L. was executed on MS medium supplemented with different concentrations of auxin and cytokinin utilizing petioles and explants of leaves. The highest significant fresh weights from petioles and leaf explants were 4.68 and 5.13 g/jar for the medium supplemented with1.0 mg L−1 BA and 1.0 mg L−1 2,4-D. The callus extract of the leaves was used for the green synthesis of silver nanoparticles (Ag-NPs). Analytical methods used for Ag-NPs characterization were UV-vis spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM). Spherical, crystallographic Ag-NPs with sizes ranging from 15 to 60nm were successfully formed. The FT-IR spectra exhibited the role of the metabolites involved in callus extract in reducing and capping Ag-NPs. The biological activities of Ag-NPs were dose-dependent. The MIC value for Staphylococcus aureus, Bacillus subtilis, and Escherichia coli was 12.5 µg mL−1, while it was 6.25 µg mL−1 for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. The highest inhibition of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, Aspergillus niger, and Pythium ultimum was 76.3 ± 3.7, 88.9 ± 4.1, 67.8 ± 2.1, and 76.4 ± 1.0%, respectively at 200 µg mL−1. Moreover, green synthesized Ag-NPs showed cytotoxic efficacy against cancerous cell lines HepG2, MCF-7 and normal Vero cell line with IC50 values of 21.76 ± 0.56, 50.19 ± 1.71, and 129.9 ± 0.94 µg mL−1, respectively.


2021 ◽  
Vol 19 (50) ◽  
pp. 84-93
Author(s):  
Taqwa Yousif ◽  
Asama Naje

In this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy.  X-ray diffraction patterns of Ag NPs exhibited 2θ values (38.1°,44.3°) corresponding to the Ag nanocrystal, while the XRD pattern of MWCNTs and SWCNTs /Ag NPs peaks appeared at 2θ = 26.2° corresponding to the (002) and at 2theta=44° which corresponds with miller indices (100) for CNTs and (200) for Ag NPs. The optical properties measured by UV-Vis. Spectroscopy. Broad and strong surface plasmon resonance (SPR) peak was detected at 420 nm, for Ag NPs. The absorption of CNTs/Ag NPs increased significantly from UV to near IR region (300-1000 nm).  Ag NPs decorated CNTs without any impurities, according to field mission scanning electron microscopy examination, with typical particle sizes of (50-80nm) for Ag-NPs, 44nm for MWCNTs/Ag-NPs, and 30nm for SWCNTs/Ag NPs. ֹThe I-V characteristics at forward bias voltage (0.5-10) volt were studied. The figure of merits (responsivity, photocurrent gain, NEP and detectivity) after coating with polymer of the detector were measured in the dark and after illumination with UV LED (365 nm), Tungsten lamp (500-800 nm) and Laser diode (808 nm).


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2018 ◽  
Vol 78 (1) ◽  
pp. 235-246 ◽  
Author(s):  
D. Dixit ◽  
D. Gangadharan ◽  
K. M. Popat ◽  
C. R. K. Reddy ◽  
M. Trivedi ◽  
...  

Abstract A simple and eco-friendly method for the synthesis of hybrid bead silver nanoparticles (AgNPs) employing the aqueous extract derived from natural and renewable source namely tropical benthic green seaweed Ulva flexuosa was developed. This route involves the reduction of Ag+ ions anchored onto macro porous methacrylic acid copolymer beads to AgNPs for employing them as antibacterial agents for in vitro water disinfection. The seaweed extract itself acts as a reducing and stabilizing agent and requires no additional surfactant or capping agent for forming the AgNPs. The nanoparticles were analyzed using high-resolution transmission electron microscopy, UV–Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy. The study elucidates that such biologically synthesized AgNPs exhibit potential antibacterial activity against two Gram positive (Bacillus subtilis, Staphylococcus aureus) and two Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains tested. The bacterial count in treated water was reduced to zero for all the strains. Atomic force microscopy was performed to confirm the pre- and post-state of the bacteria with reference to their treatment with AgNPs. Attributes like facile environment-friendly procedure, stability and high antibacterial potency propel the consideration of these AgNPs as promising antibacterial entities.


Author(s):  
Robert Lotha ◽  
Aravind Sivasubramanian ◽  
Meenakshi Sundaram Muthuraman

Objective: The present study was aimed at the biosynthesis of silver nanoparticles (AgNPs) using aqueous extract of Euphorbia cyathophora leavesand testing their anticancer potential using HT-29 cell line model.Methods: Green synthesis of silver nanoparticles was obtained with the aqueous extract of E. cyathophora. The synthesized nanoparticles wereconfirmed initially by ultraviolet-visible spectroscopy. Further, scanning electron microscopy, transmission electron microscopy, and X-Ray diffractionstudies also ensured the presence of silver nanoparticles. Zeta potential studies revealed the stability of the silver nanoparticles.Results: Antioxidant and anticancer studies of the nanoparticles against HT-29 cell line exhibited remarkable results.Conclusion: This ensures that the synthesized nanoparticles play an important role in medicinal biology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liling Jing ◽  
Mark G. Moloney ◽  
Hao Xu ◽  
Lian Liu ◽  
Wenqiang Sun ◽  
...  

Abstract Silver nanoparticles (Ag NPs) system capable of exhibiting different particle size at different temperature was developed, which depended on the extent of Diels–Alder (DA) reaction of bismaleimide with furan. Thus, Ag NPs were functionalized on the surface by a furyl-substituted carbene through an insertion reaction. Subsequent reversible DA crosslinking achieved a controlled aggregation with different particle size, which gives a series of different antibacterial activity. These Ag NPs were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Nanoparticle Size Analyzer. The aggregation of the Ag NPs could be reliably adjusted by varying the temperature of DA/reverse-DA reaction. The antibacterial activity was assessed using the inhibition zone method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which decreased first and then increased in agreement with the size evolution of Ag NPs. This approach opens a new horizon for the carbene chemistry to modify silver nanoparticles with variable size and give controlled antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document