scholarly journals Construction of Novel Nanocomposites (Cu-MOF/GOD@HA) for Chemodynamic Therapy

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1843
Author(s):  
Ya-Nan Hao ◽  
Cong-Cong Qu ◽  
Yang Shu ◽  
Jian-Hua Wang ◽  
Wei Chen

The emerging chemodynamic therapy (CDT) has received an extensive attention in recent years. However, the efficiency of CDT is influenced due to the limitation of H2O2 in tumor. In this study, we designed and synthesized a novel core-shell nanostructure, Cu-metal organic framework (Cu-MOF)/glucose oxidase (GOD)@hyaluronic acid (HA) (Cu-MOF/GOD@HA) for the purpose of improving CDT efficacy by increasing H2O2 concentration and cancer cell targeting. In this design, Cu-MOF act as a CDT agent and GOD carrier. Cu(II) in Cu-MOF are reduced to Cu(I) by GSH to obtain Cu(I)-MOF while GSH is depleted. The depletion of GSH reinforces the concentration of H2O2 in tumor to improve the efficiency of CDT. The resultant Cu(I)-MOF catalyze H2O2 to generate hydroxyl radicals (·OH) for CDT. GOD can catalyze glucose (Glu) to supply H2O2 for CDT enhancement. HA act as a targeting molecule to improve the targeting ability of Cu-MOF/GOD@HA to the tumor cells. In addition, after loading with GOD and coating with HA, the proportion of Cu(I) in Cu-MOF/GOD@HA is increased compared with the proportion of Cu(I) in Cu-MOF. This phenomenon may shorten the reactive time from Cu-MOF to Cu(I)-MOF. The CDT enhancement as a result of GOD and HA effects in Cu-MOF/GOD@HA was evidenced by in vitro cell and in vivo animal studies.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 463 ◽  
Author(s):  
Wu ◽  
Fu ◽  
Zhou ◽  
Wang ◽  
Feng ◽  
...  

Rapid increase of antimicrobial resistance has become an urgent threat to global public health. In this research, since photothermal therapy is a potential antibacterial strategy, which is less likely to cause resistance, a metal–organic framework-based chemo-photothermal combinational system was constructed. Zeolitic imidazolate frameworks-8 (ZIF-8), a porous carrier with unique features such as high loading and pH-sensitive degradation, was synthesized, and then encapsulated photothermal agent indocyanine green (ICG). First, ICG with improved stability in ZIF-8 (ZIF-8-ICG) can effectively produce heat in response to NIR laser irradiation for precise, rapid, and efficient photothermal bacterial ablation. Meanwhile, Zn2+ ions released from ZIF-8 can inhibit bacterial growth by increasing the permeability of bacterial cell membrane and further strengthen photothermal therapy efficacy by reducing the heat resistance of bacteria. Study showed that bacteria suffered from significant changes in morphology after treatment with ZIF-8-ICG under laser irradiation. The combinational chemo-hyperthermia therapy of ZIF-8-ICG could thoroughly ablate murine subcutaneous abscess induced by methicillin-resistant Staphylococcus aureus (MRSA), exhibiting a nearly 100% bactericidal ratio. Both in vitro and in vivo safety evaluation confirmed that ZIF-8-ICG was low toxic. Overall, our researches demonstrated that ZIF-8-ICG has great potential to be served as an alternative to antibiotics in combating multidrug-resistant bacterial pathogens.


2019 ◽  
Vol 9 (11) ◽  
pp. 1535-1541
Author(s):  
Jing Sun ◽  
Xiang-E Long ◽  
Rong Li ◽  
Chao-Feng Hu ◽  
Xiao-Hong Ge

The drug delivery systems (DDSs) introduced in recent years have been wide recognized to greatly evaluate the efficacy of drugs. With the aim to increase drug targeting to tumors as well as decrease the side effect of both drug and drug carriers, this study has developed a hybrid DDS by incorporation zinc based metal-organic framework (Zn-MOF) and folic acid (FA). Moreover, adriamycin (Adr) as a model anticancer drug was loaded into the FA/Zn-MOF nanoparticle. The as-prepared FA/ZnMOF/Adr was expected to serve as a tumor targeting DDS that capable of effectively delivering Adr to cervical tumors. Characterization revealed that FA/Zn-MOF/Adr was nanosized spherical particles with high stability and biocompatibility. Most importantly, the FA/Zn-MOF/Adr could realize positive targeting to FA overexpressed HeLa cells through folate receptor (FR). Therefore, FA/Zn-MOF/Adr resulted enhanced in vitro and in vivo anticancer benefits than than free Adr or FA unmodified Zn-MOF/Adr.


2020 ◽  
Vol 6 (29) ◽  
pp. eabb2695 ◽  
Author(s):  
Yufeng Liu ◽  
Yuan Cheng ◽  
He Zhang ◽  
Min Zhou ◽  
Yijun Yu ◽  
...  

Here, an integrated cascade nanozyme with a formulation of Pt@PCN222-Mn is developed to eliminate excessive reactive oxygen species (ROS). This nanozyme mimics superoxide dismutase by incorporation of a Mn–[5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]–based metal-organic framework compound capable of transforming oxygen radicals to hydrogen peroxide. The second mimicked functionality is that of catalase by incorporation of Pt nanoparticles, which catalyze hydrogen peroxide disproportionation to water and oxygen. Both in vitro and in vivo experimental measurements reveal the synergistic ROS-scavenging capacity of such an integrated cascade nanozyme. Two forms of inflammatory bowel disease (IBD; i.e., ulcerative colitis and Crohn’s disease) can be effectively relieved by treatment with the cascade nanozyme. This study not only provides a new method for constructing enzyme-like cascade systems but also illustrates their efficient therapeutic promise in the treatment of in vivo IBDs.


2020 ◽  
Author(s):  
Zhe Li ◽  
Gang Yang ◽  
Rong Wang ◽  
Yuanyuan Wang ◽  
Jing Wang ◽  
...  

Abstract Triptolide (TPL) has been employed to treat hepatocellular carcinoma (HCC). However, the poor water-solubility of TPL restrict its applications. Therefore, we prepared TPL loaded cyclodextrin-based metal-organic framework (TPL@CD-MOF) to improve the solubility and bioavailability of TPL, thus enhancing the anti-tumor effect on HCC. The BET surface and the pore size of TPL@CD-MOF were 1134.5 m2·g−1 and 1.6 nm, respectively. The results of XRD indicated that TPL in TPL@CD-MOF was encapsuled. TPL@CD-MOF showed a slower release than free TPL in vitro. Moreover, the CD-MOF improved the cell internalization and bioavailability of TPL. TPL@CD-MOF also showed higher anti-tumor efficacy in vitro and in vivo compared to free TPL. As a carrier, CD-MOF improved the solubility and bioavailability of TPL. In addition, TPL@CD-MOF exhibited improved anti-tumor effects in vitro and in vivo, indicating great potential as a carrier for insoluble anti-tumor drugs.


2021 ◽  
Author(s):  
zhu yu ◽  
Wenlong Cao ◽  
Chuangye Han ◽  
Zhen Wang ◽  
Yue Qiu ◽  
...  

Abstract In recent years, sonodynamic therapy (SDT) has been widely developed for cancer research as a promising non-invasive therapeutic strategy. Here, we synthesized Zeolitic imidazole frameworks-8 (ZIF-8) and utilized its properties to encapsulate hydrophobic Chlorin e6 (Ce6) and hydrophilic tirapazamine (TPZ) for a synergistic sonodynamic-chemotherapy, which was also accompanied by the modification of cytomembrane of gastric cancer (GC) cells. Thus, we enabled the biomimetic property to achieve targeted delivery. Ce6-mediated SDT, in combination with ultrasound irradiation, could target the release of reactive oxygen species (ROS) to aggravate further hypoxia, which activated TPZ. Combining these effects could induce the pyroptosis of GC cells. Both in vitro and in vivo experiments showed that the nanoparticle had good biocompatibility and anti-cancer function, which could provide a potential therapeutic method for cancer therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongfang Chen ◽  
You Fu ◽  
Kai Feng ◽  
Yifan Zhou ◽  
Xin Wang ◽  
...  

Abstract Background Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. Results The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. Conclusions By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited. Graphic abstract


Nanoscale ◽  
2020 ◽  
Vol 12 (48) ◽  
pp. 24437-24449
Author(s):  
Linna Zhong ◽  
Junyu Chen ◽  
Zhiyong Ma ◽  
Hao Feng ◽  
Song Chen ◽  
...  

A nanoZIF-8 modified porous composite scaffold was fabricated via extrusion-based 3D printing technology, which could promote osteogenesis in vitro and accelerate bone regeneration in vivo.


2016 ◽  
Vol 104 (10) ◽  
Author(s):  
Sara Vosoghi ◽  
Simindokht Shirvani-Arani ◽  
Ali Bahrami-Samani ◽  
Nafise Salek ◽  
Ehsan Mirerezaei ◽  
...  

AbstractIn this study, the MOF concept contributed to the preparation of a novel, bone-ablating agent composed of Cu(II) using the


Sign in / Sign up

Export Citation Format

Share Document