scholarly journals Vibration Control of Diamond Nanothreads by Lattice Defect Introduction for Application in Nanomechanical Sensors

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2241
Author(s):  
Xiao-Wen Lei ◽  
Kazuki Bando ◽  
Jin-Xing Shi

Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene sheets (GSs), have been adopted as resonators in vibration-based nanomechanical sensors because of their extremely high stiffness and small size. Diamond nanothreads (DNTs) are a new class of one-dimensional carbon nanomaterials with extraordinary physical and chemical properties. Their structures are similar to that of diamond in that they possess sp3-bonds formed by a covalent interaction between multiple benzene molecules. In this study, we focus on investigating the mechanical properties and vibration behaviors of DNTs with and without lattice defects and examine the influence of density and configuration of lattice defects on the two them in detail, using the molecular dynamics method and a continuum mechanics approach. We find that Young’s modulus and the natural frequency can be controlled by alternating the density of the lattice defects. Furthermore, we investigate and explore the use of DNTs as resonators in nanosensors. It is shown that applying an additional extremely small mass or strain to all types of DNTs significantly changes their resonance frequencies. The results show that, similar to CNTs and GSs, DNTs have potential application as resonators in nano-mass and nano-strain sensors. In particular, the vibration behaviors of DNT resonators can be controlled by alternating the density of the lattice defects to achieve the best sensitivities.

2018 ◽  
Vol 6 (27) ◽  
pp. 12932-12944 ◽  
Author(s):  
Jingxia Wu ◽  
Zhiyong Pan ◽  
Ye Zhang ◽  
Bingjie Wang ◽  
Huisheng Peng

Nitrogen-doping represents a general and effective method in adjusting the physical and chemical properties of carbon nanomaterials. The recent progress in the synthesis of nitrogen-doped carbon nanomaterials and their applications in batteries are carefully discussed with a focus on their electrochemical properties.


2015 ◽  
Vol 17 (26) ◽  
pp. 16733-16743 ◽  
Author(s):  
Lipeng Zhang ◽  
Quan Xu ◽  
Jianbing Niu ◽  
Zhenhai Xia

Defects are common but important in graphene, which could significantly tailor the electronic structures and physical and chemical properties.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Qing Liao ◽  
Tingting Song

In the development of modern society, many new materials and technologies have been integrated into the development of various industries. As a new type of two-dimensional carbon nanomaterials, graphene has great advantages in physical and chemical properties and is widely used in various fields of development. Among them, the electrochemical method is one of the important ways to prepare graphene materials, which has the characteristics of quickness and environmental protection, and can effectively produce a large amount of high-quality graphene and its composite materials. Based on this, the paper introduces the preparation method of graphene materials and studies the application of graphene materials in the field of electrochemistry.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Yoshitaka Fujimoto

Doping with heteroatoms is one of the most effective methods to tailor the electronic properties of carbon nanomaterials such as graphene and carbon nanotubes, and such nanomaterials doped with heteroatom dopants might therefore provide not only new physical and chemical properties but also novel nanoelectronics/optoelectronics device applications. The boron and nitrogen are neighboring elements to carbon in the periodic table, and they are considered to be good dopants for carbon nanomaterials. We here review the recent work of boron and nitrogen doping effects into graphene monolayer as well as bilayer on the basis of the first-principles electronic structure calculations in the framework of the density-functional theory. We show the energetics and the electronic properties of boron and nitrogen defects in graphene monolayer and bilayer. As for the nitrogen doping, we further discuss the stabilities, the growth processes, and the electronic properties associated with the plausible nitrogen defect formation in graphene which is suggested by experimental observations.


1993 ◽  
Vol 79 (2-3) ◽  
pp. 285-304 ◽  
Author(s):  
B.V. Mchedlishvili ◽  
V.V. Beryozkin ◽  
V.A. Oleinikov ◽  
A.I. Vilensky ◽  
A.B. Vasilyev

2017 ◽  
Vol 105 (6) ◽  
Author(s):  
Li-Yong Yuan ◽  
Xiang-Hong Liao ◽  
Zhi-Rong Liu ◽  
Zhi-Fang Chai ◽  
Wei-Qun Shi

AbstractRoom temperature ionic liquids (RTILs) represent a recent new class of solvents with potential application in liquid/liquid extraction based nuclear fuel reprocessing due to their unique physical and chemical properties. The work herein provides a comparison of U(VI) extraction by 8-hydroxyquinoline (HOX) in a commonly used RTIL, i.e. 1-butyl-3-methylimidazolium hexafluorophosphate ([C


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2419
Author(s):  
Rabita Mohd Firdaus ◽  
Alexandre Desforges ◽  
Mélanie Emo ◽  
Abdul Rahman Mohamed ◽  
Brigitte Vigolo

Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g−1 for starting graphene oxide to 762.5 and 1060.5 m2 g−1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g−1 and 38.9 mg g−1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar.


2001 ◽  
Vol 48 (1) ◽  
pp. 199-208 ◽  
Author(s):  
B Klajnert ◽  
M Bryszewska

Dendrimers are a new class of polymeric materials. They are highly branched, monodisperse macromolecules. The structure of these materials has a great impact on their physical and chemical properties. As a result of their unique behaviour dendrimers are suitable for a wide range of biomedical and industrial applications. The paper gives a concise review of dendrimers' physico-chemical properties and their possible use in various areas of research, technology and treatment.


The Analyst ◽  
2016 ◽  
Vol 141 (11) ◽  
pp. 3126-3140 ◽  
Author(s):  
Xiao-Rong Song ◽  
Nirmal Goswami ◽  
Huang-Hao Yang ◽  
Jianping Xie

Metal nanoclusters (NCs) are emerging as a new class of functional nanomaterials in the area of biological sensing, labelling, imaging and therapy due to their unique physical and chemical properties, such as ultrasmall size, HOMO–LUMO transition, strong luminescence together with good photostability and biocompatibility.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3388
Author(s):  
Yong-il Ko ◽  
Geonhee Lee ◽  
Min Jae Kim ◽  
Dong Yun Lee ◽  
Jungtae Nam ◽  
...  

The excellent physical and chemical properties of carbon nanomaterials render them suitable for application in gas sensors. However, the synthesis of carbon nanomaterials using high-temperature furnaces is time consuming and expensive. In this study, we synthesize a carbon nanomaterial using local laser-scribing on a substrate coated with a Cu-embedded polyimide (PI) thin film to reduce the processing time and cost. Spin coating using a Cu-embedded PI solution is performed to deposit a Cu-embedded PI thin film (Cu@PI) on a quartz substrate, followed by the application of a pulsed laser for carbonization. In contrast to a pristine PI solution-based PI thin film, the laser absorption of the Cu-embedded PI thin film based on Cu@PI improved. The laser-scribed carbon nanomaterial synthesized using Cu@PI exhibits a three-dimensional structure that facilitates gas molecule absorption, and when it is exposed to NO2 and NH3, its electrical resistance changes by −0.79% and +0.33%, respectively.


Sign in / Sign up

Export Citation Format

Share Document