scholarly journals Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2999
Author(s):  
Samane Kalhor ◽  
Stephen J. Kindness ◽  
Robert Wallis ◽  
Harvey E. Beere ◽  
Majid Ghanaatshoar ◽  
...  

Metamaterial photonic integrated circuits with arrays of hybrid graphene–superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device’s optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.

2019 ◽  
Vol 33 (18) ◽  
pp. 1950206
Author(s):  
Fang Chen ◽  
Huafeng Zhang ◽  
Lihui Sun ◽  
Jijun Li ◽  
Chunchao Yu

The electrical control of plasmonic-induced transparency (PIT) via a resonator waveguide system is presented. The proposed structure is composed of a stub and cascade ring resonator. The ring and the stub resonator are filled with electro-optical material which can control the resonance frequency by the external voltage. Two-dimensional finite difference time domain (2D FDTD) method is used to calculate the transmission and field distribution. Single PIT is investigated both by FDTD and Coupled Mode Theory (CMT). The proposed PIT can be tuned by changing the external voltage or the geometric parameters. Double and triple PIT can be obtained by introducing more ring resonators and can be tuned by external voltage. The proposed plasmonic structure may have application in slow light device, nanoscale filter, all-optical switch and refractive index sensor.


2021 ◽  
Author(s):  
Adam Raptakis ◽  
Lefteris Gounaridis ◽  
Madeleine Weigel ◽  
Moritz Kleinert ◽  
Michalis Georgiopoulos ◽  
...  

We propose a novel concept for the implementation of 2-dimensional (2D) optical phased arrays (OPAs) with end-fire waveguides as antenna elements (AEs), and we present its theoretical model and experimental proof. The concept is based on the use of 3-dimensional (3D) photonic integrated circuits (PICs) with multiple waveguiding layers on the PolyBoard platform. In their simplest form, the 3D PICs comprise AEs at different layers, vertical and lateral couplers for the distribution of light among the AEs, and phase shifters for the execution of the 2D beam scanning process. Using the field equivalence principle, we model the radiated field from the single-mode waveguide of the platform at 1550 nm, and we find that the expected beam width is 12.7<sup>o</sup>. We also investigate the perturbation that is induced into propagating fields inside parallel waveguides in proximity, and we conclude that waveguide spacings down to 6 µm can be safely used for development of uniform OPAs in the PolyBoard platform. For OPAs with 6 µm pitch and 4 AEs, we find that the maximum steering angle is 14.0<sup>o</sup> and the expected angular clearance, wherein the main radiation lobe is higher than any grating lobe by at least 3, 6 and 10 dB is 10.8<sup>o</sup>, 7.6<sup>o</sup> and 2.8<sup>o</sup>, respectively. Based on our simulations, we design and fabricate single- and 2-layer PICs with 1×4 and 2×4 OPAs. The lateral pitch of the OPAs ranges from 10 down to 6 µm, while the vertical pitch is 7.2 µm. We experimentally characterize these OPAs and validate the potential of the 2-layer PICs for 2D beam scanning on the azimuthal and elevation plane. The beam profiles and the main scanning parameters such as the maximum steering angle and the relative intensity between the main and the grating lobes are found in excellent agreement with our simulations.


2021 ◽  
Author(s):  
Mark Dong ◽  
Genevieve Clark ◽  
Andrew J. Leenheer ◽  
Matthew Zimmermann ◽  
Daniel Dominguez ◽  
...  

AbstractRecent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on N input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.


2020 ◽  
Vol 26 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Joan Manel Ramirez ◽  
Stephane Malhouitre ◽  
Kamil Gradkowski ◽  
Padraic E. Morrissey ◽  
Peter O'Brien ◽  
...  

2021 ◽  
Author(s):  
Tiantian Zheng ◽  
Zhongyin Xiao ◽  
Mingming Chen ◽  
Xiang Miao ◽  
Xiaoyu Wang

Abstract In this paper, a structure comprising a horizontal metal strip resonator(SR) and four C-shape ring resonators(CRRs) is proposed, obtaining a broadband electromagnetically induced transparency-like(EIT-like) effect. The SR and CRRs are classified into bright mode and dark mode depending on whether they can be directly excited by the incident electromagnetic wave. The three-level Λ -type system and electric field are used to explain the mechanism of EIT-like effect. Meanwhile, by decreasing the distance between SR and CRRs, a transparency window of 1.4THz with relative bandwidth of 91.93% is observed. It is found that when the bright and dark mode are directly contacted, the EIT window increases rapidly via conductive coupling, which can be explained by the surface current. Our work provides a new method for wide band EIT-like effect, which has certain value in the field of slow light, filter and non-linear optics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232 ◽  
Author(s):  
Qichang Ma ◽  
Jianan Dai ◽  
Aiping Luo ◽  
Weiyi Hong

In this paper, we numerically and theoretically study the tunable plasmonically induced transparency (PIT) effect based on the graphene metasurface structure consisting of a graphene cut wire (CW) resonator and double split-ring resonators (SRRs) in the middle infrared region (MIR). Both the theoretical calculations according to the coupled harmonic oscillator model and simulation results indicate that the realization of the PIT effect significantly depends on the coupling distance and the coupling strength between the CW resonator and SRRs. In addition, the geometrical parameters of the CW resonator and the number of the graphene layers can alter the optical response of the graphene structure. Particularly, compared with the metal-based metamaterial, the PIT effect realized in the proposed metasurface can be flexibly modulated without adding other actively controlled materials and reconstructing the structure by taking advantage of the tunable complex surface conductivity of the graphene. These results could find significant applications in ultrafast variable optical attenuators, sensors and slow light devices.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950068 ◽  
Author(s):  
Renxia Ning ◽  
Xiang Gao ◽  
Zhenhai Chen

A multiband tunable electromagnetic induced transparency (EIT) effect in metamaterial at microwave frequency range is investigated. The sandwich structure contains silicon dioxide and gold layers. The metamaterial structure has multiband EIT phenomenon due to coupling with U-Shaped split-ring resonators (SRRs) and cut wire (CW). Two different modes can be obtained in CW and a single band EIT effects in SRRs. Results show that the different resonances in the structure lead to multiband EIT. By adding the finding of the graphene layer on top of the structures, EIT window can be changed obviously. It is shown that the graphene can adjust EIT phenomenon. The group index is calculated to exhibit the slow light effect. The demonstrated phenomenon can provide valuable variety of important applications, including microwave communication technology, microwave devices, slow light and switch devices.


2021 ◽  
Author(s):  
MADHUSUDAN MISHRA ◽  
Nikhil Das

In this letter, we propose a new approach of hetero-cladding for realization of compact CMOS compatible silicon photonic directional couplers. The proposed hetero-cladding comprises ferroelectric BaTiO<sub>3</sub> (BTO) and SiO<sub>2</sub> to control the evanescent mode within the structure. The results show very small and identical coupling length for both TE and TM modes with reduced device cross-section, which promises for a huge reduction in the footprint of both conventional and programmable photonic integrated circuits. The concept can also be utilized to design compact, low loss and energy efficient phase shifters, other types of couplers, sensors etc.


Sign in / Sign up

Export Citation Format

Share Document