scholarly journals Atomic Defect Induced Saturable Absorption of Hexagonal Boron Nitride in Near Infrared Band for Ultrafast Lasing Applications

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3203
Author(s):  
Chen Cheng ◽  
Ziqi Li ◽  
Ningning Dong ◽  
Rang Li ◽  
Jun Wang ◽  
...  

Defect-induced phenomena in 2D materials has received increasing interest among researchers due to the novel properties correlated with precise modification of materials. We performed a study of the nonlinear saturable absorption of the boron-atom-vacancy defective hexagonal boron nitride (h-BN) thin film at a wavelength of ~1 μm and its applications in ultrafast laser generation. The h-BN is with wide band gap of ~6 eV. Our investigation shows that the defective h-BN has a wide absorption band from visible to near infrared regimes. First-principle calculations based on density functional theory (DFT) indicate that optical property changes may be attributed to the boron-vacancy-related defects. The photoluminescence spectrum shows a strong emission peak at ~1.79 eV. The ultrafast Z-scan measurement shows saturable absorbance response has been detected for the defective h-BN with saturation intensity of ~1.03 GW/cm2 and modulation depth of 1.1%. In addition, the defective h-BN has been applied as a new saturable absorber (SA) to generate laser pulses through the passively Q-switched mode-locking configuration. Based on a Nd:YAG waveguide platform, 8.7 GHz repetition rate and 55 ps pulse duration of the waveguide laser have been achieved. Our results suggest potential applications of defective h-BN for ultrafast lasing and integrated photonics.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3676
Author(s):  
Pulak Chandra Debnath ◽  
Dong-Il Yeom

Wide-spectral saturable absorption (SA) in low-dimensional (LD) nanomaterials such as zero-, one-, and two-dimensional materials has been proven experimentally with outstanding results, including low saturation intensity, deep modulation depth, and fast carrier recovery time. LD nanomaterials can therefore be used as SAs for mode-locking or Q-switching to generate ultrafast fiber laser pulses with a high repetition rate and short duration in the visible, near-infrared, and mid-infrared wavelength regions. Here, we review the recent development of emerging LD nanomaterials as SAs for ultrafast mode-locked fiber laser applications in different dispersion regimes such as anomalous and normal dispersion regimes of the laser cavity operating in the near-infrared region, especially at ~1550 nm. The preparation methods, nonlinear optical properties of LD SAs, and various integration schemes for incorporating LD SAs into fiber laser systems are introduced. In addition to these, externally (electrically or optically) controlled pulsed fiber laser behavior and other characteristics of various LD SAs are summarized. Finally, the perspectives and challenges facing LD SA-based mode-locked ultrafast fiber lasers are highlighted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2367
Author(s):  
Mahmoud Muhanad Fadhel ◽  
Norazida Ali ◽  
Haroon Rashid ◽  
Nurfarhana Mohamad Sapiee ◽  
Abdulwahhab Essa Hamzah ◽  
...  

Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2603-2639 ◽  
Author(s):  
Qianqian Hao ◽  
Cong Wang ◽  
Wenxin Liu ◽  
Xiaoqin Liu ◽  
Jie Liu ◽  
...  

AbstractLow-dimensional (LD) materials have originated a range of innovative applications in photonics and optoelectronics owning to their advantages of ultrafast carrier response and distinct nonlinear saturable absorption properties. In particular, these emerging LD materials including zero-, one-, and two-dimensional materials have recently been utilized for short and ultrashort pulse laser generation in the visible, near infrared, and mid-infrared wavelength regions. Here, we review recent progress demonstrating the application of LD materials as versatile, wideband saturable absorbers for Q-switching and mode-locking in all-solid-state lasers. The laser performance in operating wavelength, output power, pulse width, repetition rate, and pulse energy is reviewed. Finally, the challenges and future perspectives are suggested.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1741-1751
Author(s):  
Young In Jhon ◽  
Jinho Lee ◽  
Young Min Jhon ◽  
Ju Han Lee

Abstract Metallic 2D materials can be promising saturable absorbers for ultrashort pulsed laser production in the long wavelength regime. However, preparing and manipulating their 2D structures without layer stacking have been nontrivial. Using a combined experimental and theoretical approach, we demonstrate here that a metallic titanium carbide (Ti3C2Tx), the most popular MXene 2D material, can have excellent nonlinear saturable absorption properties even in a highly stacked state due to its intrinsically existing surface termination, and thus can produce mode-locked femtosecond pulsed lasers in the 1.9-μm infrared range. Density functional theory calculations reveal that the electronic and optical properties of Ti3C2Tx MXene can be well preserved against significant layer stacking. Indeed, it is experimentally shown that 1.914-μm femtosecond pulsed lasers with a duration of 897 fs are readily generated within a fiber cavity using hundreds-of-layer stacked Ti3C2Tx MXene saturable absorbers, not only being much easier to manufacture than mono- or few-layered ones, but also offering character-conserved tightly-assembled 2D materials for advanced performance. This work strongly suggests that as-obtained highly stacked Ti3C2Tx MXenes can serve as superb material platforms for versatile nanophotonic applications, paving the way toward cost-effective, high-performance photonic devices based on MXenes.


Author(s):  
Jianwei Hu ◽  
Rong Huang ◽  
Ziqiao Wei ◽  
Minru Wen ◽  
Fugen Wu ◽  
...  

Abstract Two-dimensional materials have drawn great interest for their applications in mode-locking owning to their unique optical nonlinearities. However, most of these 2D materials are semi-conductor. In this study, a new kind of semimetal Indium bismuth (InBi) is reported which is a topological nodal-line semimetal with exotic physical properties. The InBi nanomaterials was prepared through liquid phase exfoliation method with average thickness of 32.8 nm. The saturable absorption property was measured and passive mode-locking operation was achieved successfully in Er-doped fiber laser. It exhibits a modulation depth of 3.21%, a saturable intensity of 100 MW/cm2, and a pulse width about 859.97 fs corresponding to the central wavelength of 1562.27 nm and 3-dB bandwidth of 2.98 nm. The experimental results open a new avenue for the use of semimetals InBi nanomaterials in lasers and photonics applications.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1026
Author(s):  
Mohammad Taghi Ahmadi ◽  
Ahmad Razmdideh ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC2N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B–N and C–C bonds. This paper focused on the nearest neighbor’s tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron–carbon and nitrogen–carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev.


Sign in / Sign up

Export Citation Format

Share Document