scholarly journals Low Dark Current and Performance Enhanced Perovskite Photodetector by Graphene Oxide as an Interfacial Layer

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
Ali Hassan ◽  
Muhammad Azam ◽  
Yeong Hwan Ahn ◽  
Muhammad Zubair ◽  
Yu Cao ◽  
...  

Organic–inorganic hybrid perovskite photodetectors are gaining much interest recently for their high performance in photodetection, due to excellent light absorption, low cost, and ease of fabrication. Lower defect density and large grain size are always favorable for efficient and stable devices. Herein, we applied the interface engineering technique for hybrid trilayer (TiO2/graphene oxide/perovskite) photodetector to attain better crystallinity and defect passivation. The graphene oxide (GO) sandwich layer has been introduced in the perovskite photodetector for improved crystallization, better charge extraction, low dark current, and enhanced carrier lifetime. Moreover, the trilayer photodetector exhibits improved device performance with a high on/off ratio of 1.3 × 104, high responsivity of 3.38 AW−1, and low dark current of 1.55 × 10−11 A. The insertion of the GO layer also suppressed the perovskite degradation process and consequently improved the device stability. The current study focuses on the significance of interface engineering to boost device performance by improving interfacial defect passivation and better carrier transport.

2021 ◽  
Author(s):  
Naeime Salandari-Jolge ◽  
Ali A. Ensafi ◽  
Behzad Rezaei

Dipyridamole is a prescribed medication used to treat cardiovascular diseases, angina pectoris, imaging tests for heart patients, and myocardial infarction. Therefore, high selectivity and sensitivity, low cost, and high-performance speed...


2014 ◽  
Vol 2 (29) ◽  
pp. 11144-11154 ◽  
Author(s):  
Ming Tian ◽  
Qin Ma ◽  
Xiaolin Li ◽  
Liqun Zhang ◽  
Toshio Nishi ◽  
...  

A novel dielectric composite with high dielectric constant (k), low dielectric loss, low elastic modulus and large actuated strain at a low electric field was prepared by a simple, low-cost and efficient method.


2018 ◽  
Vol 6 (28) ◽  
pp. 13908-13917 ◽  
Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yu-Chung Chang ◽  
Guan-Cheng Chen ◽  
Hsueh-Yu Chen ◽  
...  

In this study, a simple, low-cost, and powerful titanium niobium oxidereduced graphene oxide (TiNb2O7–rGO) nanocomposite electrocatalyst was synthesized through dispersion and blending in aqueous solution followed by freeze-drying and annealing for all-vanadium redox flow batteries (VRFBs).


2019 ◽  
Vol 13 (02) ◽  
pp. 2051002
Author(s):  
Shaowei Lu ◽  
Junchi Ma ◽  
Keming Ma ◽  
Shuai Wang ◽  
Xiangdong Yang ◽  
...  

High-performance pressure sensors have caused widespread concern due to the potential applications in 3D-touch technology and wearable electronic devices. Herein, a new type of graphene pressure sensor based on the glass fiber surfacing mat coated with graphene oxide aqueous solution by a spray-vacuum filtration method and HI acid reduction method is reported. It is a simple and highly effective method to reduce graphene oxide films into highly conductive graphene films without destroying their integrity and flexibility at a low temperature based on the nucleophilic substitution reaction. The FTIR, SEM and conductivity tests indicate that the optimum time for graphene oxide to be reduced is 30[Formula: see text]min, under this condition enter the epoxy group has been reacted without damaging the regular sp2 hybrid C atom structure in graphene. The conductivity of the graphene pressure sensor is increased significantly to 23260[Formula: see text]S/m. The monotonic compressing test for 100[Formula: see text]Pa/s and the test of the metal block placement and removal demonstrate that the sensor exhibits relatively high linearity of 99.74% between the response and pressure, the advantage makes the sensor monitor pressure more accurately. More importantly, the pressure sensor based on the glass fiber surfacing mat coated with graphene shows extremely high sensitivity (0.169[Formula: see text][Formula: see text]), fast response time (251[Formula: see text]ms) and good stability for 1000 cycles. Based on its superior performance, it also demonstrates potential applications in measuring pressure and human body’s motions.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 509
Author(s):  
Hong Yu ◽  
Chenggui Gao ◽  
Jiang Zou ◽  
Wensheng Yang ◽  
Quan Xie

To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg2Si/Si heterojunction was established using the Silvaco Atlas module. Second, the effects of the doping concentrations of Mg2Si and Si on the photoelectric properties of the Mg2Si/Si heterojunction PD, including the energy band, breakdown voltage, dark current, forward conduction voltage, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on/off ratio, response time, and recovery time, were simulated. At different doping concentrations, the heterojunction energy band shifted, and a peak barrier appeared at the conduction band of the Mg2Si/Si heterojunction interface. When the doping concentrations of Si and Mg2Si layer were 1017, and 1016 cm−3, respectively, the Mg2Si/Si heterojunction PD could obtain optimal photoelectric properties. Under these conditions, the maximum EQE was 70.68% at 800 nm, the maximum responsivity was 0.51 A/W at 1000 nm, the minimum NEP was 7.07 × 10−11 WHz–1/2 at 1000 nm, the maximum detectivity was 1.4 × 1010 Jones at 1000 nm, and the maximum on/off ratio was 141.45 at 1000 nm. The simulation and optimization result also showed that the Mg2Si/Si heterojunction PD could be used for visible and SWIR photodetection in the wavelength range from 400 to 1500 nm. The results also provide technical support for the future preparation of eco-friendly heterojunction photodetectors.


2018 ◽  
Vol 73 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Yu Ma ◽  
Dongyu Zhao ◽  
Yongheng Chen ◽  
Jing Huang ◽  
Zhixin Zhang ◽  
...  

Author(s):  
Jianming Li ◽  
yan meng ◽  
Yujue Wang ◽  
Xiaopeng Li ◽  
Yingling Lai ◽  
...  

With the high theoretical capacity and low cost, the FeF2 possesses great potential in the application of the next-generation lithium-ion battery. However, poor conductivity and dramatic volume change during the...


MRS Advances ◽  
2017 ◽  
Vol 2 (18) ◽  
pp. 1029-1036 ◽  
Author(s):  
Aditi Chandra ◽  
Mao Takashima ◽  
Joey Li ◽  
Patricia Beck ◽  
Scott Bruner ◽  
...  

ABSTRACTStainless steel substrates enable a combination of low cost, flexibility, durability, high processing temperatures, and sub-100 um thickness making it well suited for sheet based and roll-to-roll processing. NFC (13.56 MHz) based circuits using high performance polysilicon TFTs on steel sheets have been manufactured using a hybrid printed process in a production environment. The process scheme utilizes a hybrid, additive materials approach encompassing low cost manufacturing steps such as slot die coating and screen printing of silicon and dopant inks to enable a high throughput, low cost, manufacturing flow. This paper describes the approach for migrating from a sheet-based hybrid process flow to a R2R-based process. A comparison of substrate choices and considerations for R2R process integration is presented. A sensitive electrical method for evaluating the feasibility of R2R-based process integration schemes and materials selection is presented. MIM capacitor leakage, TFT device characteristics, NFC circuit performance, and defect density considerations are shown as a function of steel substrate bending, down to a diameter of 0.75 inches. Electrical characteristics and optical inspections show no measurable change to insulator characteristics, demonstrating a high degree of flexibility and overall device and process capability for R2R processing.


2015 ◽  
Vol 3 (15) ◽  
pp. 7715-7718 ◽  
Author(s):  
Mianqi Xue ◽  
Dong Chen ◽  
Xusheng Wang ◽  
Jitao Chen ◽  
G. F. Chen

A low-cost, mass-produced, dry-gel-based method has been developed for fabricating high performance graphene-based electroactive materials with 3D multiscale-pore architecture.


Sign in / Sign up

Export Citation Format

Share Document