scholarly journals Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 269
Author(s):  
Konstantinos N. Koutras ◽  
Sokratis N. Tegopoulos ◽  
Vasilios P. Charalampakos ◽  
Apostolos Kyritsis ◽  
Ioannis F. Gonos ◽  
...  

In this work, the influence of semi-conductive SiC nanoparticles on the AC breakdown voltage and partial discharge development in natural ester oil FR3 is examined. Primarily, the dielectric constant and the electrical conductivity of the nanoparticles are measured following the broadband dielectric spectroscopy technique. The nanoparticles are added into the matrix following the ultrasonication process in three weight percentage ratios in order for their effect to be evaluated as a function of their concentration inside the base oil. The processing of the results reveals that the nanofluid containing SiC nanoparticles at 0.004% w/w demonstrates the highest AC dielectric strength improvement and shows the greatest resistance to the appearance of partial discharge activity. The mechanisms behind the aforementioned results are discussed in detail and confirmed by the broadband dielectric spectroscopy technique, which reveals that this particular nanofluid sample is characterized by lower dielectric constant and electrical conductivity than the one with double the weight percentage ratio.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian Radoń ◽  
Dariusz Łukowiec ◽  
Patryk Włodarczyk

AbstractThe dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl− ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl− ions, not electrons.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6540
Author(s):  
Konstantinos N. Koutras ◽  
Ioannis A. Naxakis ◽  
Eleftheria C. Pyrgioti ◽  
Vasilios P. Charalampakos ◽  
Ioannis F. Gonos ◽  
...  

This study addresses the effect of nanoparticles’ conductivity and surface charge on the dielectric performance of insulating nanofluids. Dispersions of alumina and silicon carbide nanoparticles of similar size (~50 nm) and concentration (0.004% w/w) were prepared in natural ester oil. The stability of the dispersions was explored by dynamic light scattering. AC, positive and negative lightning impulse breakdown voltage, as well as partial discharge inception voltage of the nanofluid samples were measured and compared with the respective properties of the base oil. The obtained results indicate that the addition of SiC nanoparticles can lead to an increase in AC breakdown voltage and also enhance the resistance of the liquid to the appearance of partial discharge. On the other hand, the induction of positive charge from the Al2O3 nanoparticles could be the main factor leading to an improved positive Lightning Impulse Breakdown Voltage and worse performance at negative polarity.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2835
Author(s):  
Jacek Fal ◽  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
Jolanta Sobczak ◽  
Jinwen Shi ◽  
...  

Two types of graphite/diamond (GD) particles with different ash content was applied to prepare new electroconductive polylactide (PLA)-based nanocomposites. Four samples of nanocomposites for each type of GD particles with mass fraction 0.01, 0.05, 0.10, and 0.15 were prepared via an easily scalable method—melt blending. The samples were subjected to the studies of electrical properties via broadband dielectric spectroscopy. The results indicated up to eight orders of magnitude improvement in the electrical conductivity and electrical permittivity of the most loaded nanocomposites, in reference to the neat PLA. Additionally, the influence of ash content on the electrical conductivity of the nanocomposites revealed that technologically less-demanding fillers, i.e., of higher ash content, were the most beneficial in the light of nanofiller dispersibility and the final properties.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 172
Author(s):  
Charishma Almeida ◽  
Sohan Paul ◽  
Lazarus Godson Asirvatham ◽  
Stephen Manova ◽  
Rajesh Nimmagadda ◽  
...  

The thermophysical and electrical properties of graphene–transformer oil nanofluid at three weight percentage concentrations (0.01%, 0.03%, and 0.05%) were experimentally studied. Experiments conducted to find viscosity, surface tension, density, specific resistance, electrical conductivity, and dielectric dissipation at various temperatures ranging from 20 °C to 90 °C. It was noted that the nanofluid with 0.05% concentration showed an enhancement of 2.5% and 16.6% for density and viscosity, respectively, when compared to transformer oil. In addition, an average reduction in surface tension is noted to be 10.1% for the maximum concentration of nanofluid. Increase in heat load and concentration improves Brownian motion and decreases the cohesive force between these particles, which results in a reduction in surface tension and increases the heat-transfer rate compared to transformer oil. In addition, for the maximum concentration of nanoparticles, the electrical conductivity of nanofluid was observed to be 3.76 times higher than that of the transformer oil at 90 °C. The addition of nanoparticles in the transformer oil decreases the specific resistance and improves the electrical conductivity thereby enhancing the breakdown voltage. Moreover, the thermophysics responsible for the improvement in thermophysical and electrical properties are discussed clearly, which will be highly useful for the design of power transmission/distribution systems.


2019 ◽  
Vol 12 (25) ◽  
pp. 105-112
Author(s):  
Ahamad A. Hasan

Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.


2020 ◽  
Author(s):  
Swati Arora ◽  
Julisa Rozon ◽  
Jennifer Laaser

<div>In this work, we investigate the dynamics of ion motion in “doubly-polymerized” ionic liquids (DPILs) in which both charged species of an ionic liquid are covalently linked to the same polymer chains. Broadband dielectric spectroscopy is used to characterize these materials over a broad frequency and temperature range, and their behavior is compared to that of conventional “singly-polymerized” ionic liquids (SPILs) in which only one of the charged species is attached to the polymer chains. Polymerization of the DPIL decreases the bulk ionic conductivity by four orders of magnitude relative to both SPILs. The timescales for local ionic rearrangement are similarly found to be approximately four orders of magnitude slower in the DPILs than in the SPILs, and the DPILs also have a lower static dielectric constant. These results suggest that copolymerization of the ionic monomers affects ion motion on both the bulk and the local scales, with ion pairs serving to form strong physical crosslinks between the polymer chains. This study provides quantitative insight into the energetics and timescales of ion motion that drive the phenomenon of “ion locking” currently under investigation for new classes of organic electronics.</div>


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3610
Author(s):  
Norhafezaidi Mat Saman ◽  
Izzah Hazirah Zakaria ◽  
Mohd Hafizi Ahmad ◽  
Zulkurnain Abdul-Malek

Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document