scholarly journals First-principles Investigations of Magnetic Semiconductors: An example of Transition Metal Decorated Two-dimensional SnS Monolayer

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 789 ◽  
Author(s):  
Fangfang Wang ◽  
Liyu Zhou ◽  
Zhen Ma ◽  
Mingxue He ◽  
Fang Wu ◽  
...  

The absence of magnetic moments in pristine two-dimensional (2D) semiconducting materials has attracted many research interests. Transition-metal (TM) decoration has been found to be an effective strategy to introduce magnetic moments in non-magnetic 2D semiconductors. However, the stability of TM atoms modified 2D semiconductors has not been well explored. Here, taking 2D Tin (II) sulfide (SnS) monolayer as a prototype, we explored the stability of magnetic semiconductors through this method. In our studies, all possible configurations of TM decoration have been considered, namely, adsorption on the intact surface, S vacancy, and Sn vacancy. Based on the energy gain and electronic analysis, our results revealed that most of the TM atoms will form a cluster, and only several TM atoms can be effectively doped into the SnS monolayer. Furthermore, the band calculations showed that only Mn substitution will give rise to a magnetic semiconductor. Thus, the reported results here provide some hidden information for further realization of the magnetic semiconductors and serve as a paradigm to prepare 2D magnetic semiconductors.

2014 ◽  
Vol 28 (18) ◽  
pp. 1450096 ◽  
Author(s):  
Chunlei Wang ◽  
Dan Li ◽  
Yuan Niu ◽  
Hongmin Zhao ◽  
Chunjun Liang

We performed first-principles calculations for two Mn -doped structures in which Mn atoms substitute Ti atoms to determine whether (i) it is more conducive to Mn ion doping and (ii) ferromagnetism can occur in F adsorption anatase TiO 2 surfaces. Ferromagnetic (FM) coupling is more stable than antiferromagnetic (AFM) coupling for all doping configurations as the adsorption of F atoms on the surface significantly lowers the formation energy of the TiO 2: Mn system. The magnetic moments of the Mn ions are reduced, whereas those of O atoms on the surface are increased. The magnetic moment of the O atoms is mainly derived from the spin polarization p x and p y orbitals. F adsorption promotes doping of Mn atoms and to a certain extent improves the stability of the structure, magnetism and metallicity.


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


2021 ◽  
Vol 23 (14) ◽  
pp. 8784-8791
Author(s):  
Qingling Meng ◽  
Ling Zhang ◽  
Jinge Wu ◽  
Shuwei Zhai ◽  
Xiamin Hao ◽  
...  

Theoretical screening of transition metal atoms anchored on monolayer C9N4 as highly stable, catalytically active and selective single-atom catalysts for nitrogen fixation.


Author(s):  
Fang Wu ◽  
Min Dou ◽  
Huan Li ◽  
Yunfei Liu ◽  
Qingnian Yao ◽  
...  

It is important to predict new two-dimensional (2D) ferromagnetic materials for next-generation information storage media. However, discovered 2D ferromagnetic materials are still rare. Here, we explored that 2D transition metal...


Author(s):  
Jiao Yu ◽  
Caijuan Xia ◽  
Zhengyang Hu ◽  
jianping Sun ◽  
Xiaopeng Hao ◽  
...  

With in-plane heterojunction contacts between semiconducting 2H phase (as channel) and the metallic 1T' phase (as electrode), the two-dimensional (2D) transition metal chalcogenides (TMDs) field-effect transistors (FETs) have received much...


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2012 ◽  
Vol 190 ◽  
pp. 291-294
Author(s):  
Igor A. Abrikosov ◽  
Marcus Ekholm ◽  
Alena V. Ponomareva ◽  
Svetlana A. Barannikova

We demonstrate the importance of accounting for the complex magnetic ground state and finite temperature magnetic excitations in theoretical simulations of structural and elastic properties of transition metal alloys. Considering Fe72Cr16Ni12face centered cubic (fcc) alloy, we compare results of first-principles calculations carried out for ferromagnetic and non-magnetic states, as well as for the state with disordered local moments. We show that the latter gives much more accurate description of the elastic properties for paramagnetic alloys. We carry out a determination of the magnetic ground state for fcc Fe-Mn alloys, considering collinear, as well as non-collinear states, and show the sensitively of structural and elastic properties in this system to the detailed alignment between magnetic moments. We therefore conclude that it is essential to develop accurate models of the magnetic state for the predictive description of properties of transition metal alloys.


2020 ◽  
Vol 8 (15) ◽  
pp. 5211-5221 ◽  
Author(s):  
Jiaqi Zhou ◽  
Mohammad Khazaei ◽  
Ahmad Ranjbar ◽  
Vei Wang ◽  
Thomas D. Kühne ◽  
...  

Two-dimensional transition metal carbides and nitrides (named as MXenes) and their functionalized ones exhibit various physical and chemical characteristics.


Sign in / Sign up

Export Citation Format

Share Document