scholarly journals Environmental Remediation Applications of Carbon Nanotubes and Graphene Oxide: Adsorption and Catalysis

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 439 ◽  
Author(s):  
Yanqing Wang ◽  
Can Pan ◽  
Wei Chu ◽  
Adavan Vipin ◽  
Ling Sun

Environmental issues such as the wastewater have influenced each aspect of our lives. Coupling the existing remediation solutions with exploring new functional carbon nanomaterials (e.g., carbon nanotubes, graphene oxide, graphene) by various perspectives shall open up a new venue to understand the environmental issues, phenomenon and find out the ways to get along with the nature. This review makes an attempt to provide an overview of potential environmental remediation solutions to the diverse challenges happening by using low-dimensional carbon nanomaterials and their composites as adsorbents, catalysts or catalysts support towards for the social sustainability.

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1340 ◽  
Author(s):  
Qiang Ma ◽  
Ailimire Yilihamu ◽  
Zhu Ming ◽  
Shengnan Yang ◽  
Mengyao Shi ◽  
...  

Carbon nanomaterials are widely studied and applied nowadays, with annual production increasing. After entering the environment, the complete degradation of these carbon nanomaterials by microorganisms is proposed as an effective approach for detoxification and remediation. In this study, we evaluated the degradation of pristine multiwalled carbon nanotubes (p-MWCNTs) and oxidized multiwalled carbon nanotubes (o-MWCNTs) by the white rot fungus Phanerochaete chrysosporium, which is a powerful decomposer in the carbon cycle and environmental remediation. Both p-MWCNTs and o-MWCNTs were partially oxidized by P. chrysosporium as indicated by the addition of oxygen atoms to the carbon skeleton in the forms of C=O and O–H bonds. The fungal oxidation led to the shortening of MWCNTs, where precipitated o-MWCNTs showed more short tubes. During the transformation, the defects on the tubes became detached from the carbon skeleton, resulting in decreases of the ID/IG (intensity of D-band/ intensity of G-band) values in Raman spectra. The transformation mechanism was attributed to the enzymatic degradation by laccase and manganese peroxidase excreted by P. chrysosporium. The results collectively indicated that MWCNTs could be transformed by P. chrysosporium, but complete degradation could not be achieved in a short time period. The implications on the environmental risks of carbon nanomaterials are discussed.


2018 ◽  
Vol 52 (24) ◽  
pp. 3325-3340 ◽  
Author(s):  
Doo-Yeol Yoo ◽  
Ilhwan You ◽  
Hyunchul Youn ◽  
Seung-Jung Lee

This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterials—multi-walled carbon nanotubes, graphite nanofibers, and graphene oxide—were considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150 mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1 wt% multi-walled carbon nanotubes, but only slightly decreased by including 1 wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 με) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1 wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.


2012 ◽  
Vol 1 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Xiaoyong Zhang ◽  
Wenbing Hu ◽  
Jing Li ◽  
Lei Tao ◽  
Yen Wei

Abstract Investigations of the interactions between carbon nanomaterials (CNMs) and living organisms and their subsequent biological responses are of fundamental significance for toxicity assessment and further biomedical applications. In this work, the cellular uptake and cytotoxicity of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and nanodiamond (ND) were examined and compared. We demonstrated that all of the CNMs were readily internalized by HeLa cells through nonspecific cellular uptake. Their cell uptake ratios showed significant differences in the following order: ND > MWCNTs > GO. A series of biological assays were used to evaluate the cytotoxicity of CNMs. It was found that CNMs showed dose- and time-dependent cytotoxicity to HeLa cells. However, cytotoxicity of CNMs was not associated with their cell uptake ratios. Among them, ND exhibited the highest cell uptake ratio and the least cytotoxicity. To the best of our knowledge, this is the first study which has quantitatively determined and compared the cell uptake ratios and cytotoxicities of MWCNTs, GO and ND. And we expect that these results described here could provide useful information for the development of new strategies to design efficient drug delivery nanocarriers and therapeutic systems as well as deep insights into the mechanism of CNMs' cytotoxicity.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Ali Mostofizadeh ◽  
Yanwei Li ◽  
Bo Song ◽  
Yudong Huang

In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons), one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes), and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1059
Author(s):  
Josef Jampilek ◽  
Katarina Kralova

Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1435
Author(s):  
Jose M. González-Domínguez ◽  
Alejandro Baigorri ◽  
Miguel Á. Álvarez-Sánchez ◽  
Eduardo Colom ◽  
Belén Villacampa ◽  
...  

In the vast field of conductive inks, graphene-based nanomaterials, including chemical derivatives such as graphene oxide as well as carbon nanotubes, offer important advantages as per their excellent physical properties. However, inks filled with carbon nanostructures are usually based on toxic and contaminating organic solvents or surfactants, posing serious health and environmental risks. Water is the most desirable medium for any envisioned application, thus, in this context, nanocellulose, an emerging nanomaterial, enables the dispersion of carbon nanomaterials in aqueous media within a sustainable and environmentally friendly scenario. In this work, we present the development of water-based inks made of a ternary system (graphene oxide, carbon nanotubes and nanocellulose) employing an autoclave method. Upon controlling the experimental variables, low-viscosity inks, high-viscosity pastes or self-standing hydrogels can be obtained in a tailored way. The resulting inks and pastes are further processed by spray- or rod-coating technologies into conductive films, and the hydrogels can be turned into aerogels by freeze-drying. The film properties, with respect to electrical surface resistance, surface morphology and robustness, present favorable opportunities as metal-free conductive layers in liquid-phase processed electronic device structures.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. de la Luz-Asunción ◽  
V. Sánchez-Mendieta ◽  
A. L. Martínez-Hernández ◽  
V. M. Castaño ◽  
C. Velasco-Santos

Carbon nanomaterials have a great potential in environmental studies; they are considered as superior adsorbents of pollutants due to their physical and chemical properties. Functionalization and dimension play an important role in many functions of these nanomaterials including adsorption. In this research, adsorption process was achieved with one-dimension nanomaterials: single walled and multiwalled carbon nanotubes were used as received and after oxidation treatment also two-dimensional nanomaterials were used: graphene oxide and reduced graphene oxide. Carbon nanotubes were modified by hydrogen peroxide under microwave irradiation. The reduction of graphene oxide was achieved by using ascorbic acid.R2values obtained with the pseudo-second-order model are higher than 0.99. The results demonstrate that Freundlich isotherm provides the best fit for the equilibrium data (R2>0.94).RLvalues are between 0 and 1; this represents favorable adsorption between carbon nanomaterials and phenol. The adsorption process occurs byπ-πinteractions and hydrogen bonding and not by electrostatic interactions. The results indicate that the adsorption of phenol on carbon nanomaterials depends on the adsorbents’ surface area, and it is negatively influenced by the presence of oxygenated groups.


2015 ◽  
Vol 748 ◽  
pp. 175-178
Author(s):  
Wen Xiu Yu ◽  
Su Jie Qin ◽  
Zuo Ping Xiong ◽  
Zhong Qiang Ren ◽  
Xue Wen Wang ◽  
...  

Multi-walled carbon nanotubes/reduced graphene oxide (MWCNT/rGO) hybrid films have attracted increasing massive attention due to their unique advantages such as high conductivity, superior mechanical property and thermal properties. In this work, a novel, facile and low cost method was developed to fabricate the MWCNT/rGO flexible ultrathin hybrid films with the thickness of about 55 nm. These hybrid films can be fabricated repeatedly through layer-by-layer exfoliation on the surface of liquids, and transferred to various substrates. The devices based on MWCNT/rGO hybrid films offer a unique platform for integrating carbon nanomaterials for advanced electronics, energy, and sensor applications.


Author(s):  
M. Nasraoui ◽  
◽  
Yu.V. Litovka ◽  
V.Yu. Dolmatov ◽  
◽  
...  

A method to increase the microhardness of the chromium galvanic coating by adding a mixture of carbon nanomaterials (nanodiamonds, single-walled and multi-walled nanotubes, graphene oxide) into a standard chromium galvanic coating electrolyte was proposed. The increase in the microhardness of the chromium galvanic coating was revealed and explained. This is due to a combination of two mechanisms: the introduction of nanodiamonds into the crystal lattice of the coating metal and the appearance of additional crystallization centers on defects in carbon nanotubes. The method of obtaining parts with a higher service life when using traditional chromium galvanic coating, as well as when using multi-walled carbon nanotubes, single-walled carbon nanotubes, nanodiamonds, and graphene oxide separately, was demonstrated. The best result was obtained using a mixture of nanodiamonds and multi-walled carbon nanotubes. The microhardness of the nanomodified chromium galvanic coating was measured, and it was found to increase by 27 %.


Sign in / Sign up

Export Citation Format

Share Document