scholarly journals New Insights into the Interaction between Graphene Oxide and Beta-Blockers

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1429
Author(s):  
Yuehua Deng ◽  
Yani Li ◽  
Wenjie Nie ◽  
Xiang Gao ◽  
Shentan Liu ◽  
...  

As a nano-adsorbent, magnetic graphene oxide (GO/Fe3O4) was synthesized to potentially adsorb propranolol (PRO) from water. The synthetic material was characterized by SEM, TEM, VSM, FTIR, XRD, zeta potential, and XPS. The environmental factors, such as pH, humic acid concentration, PRO concentration, and contact time, were investigated regarding their effect on the adsorption process. The kinetics data fitted the pseudo first-order and second-order kinetics equations. The Langmuir equation, the Freundlich equation, and the Sips equation were used to analyze the adsorption isotherms. Electrostatic attraction, hydrogen bonding, and the π–π interaction all contributed to the adsorption process of PRO onto GO/Fe3O4. The discovery of this study emphasized the feasibility of GO/Fe3O4 removal of PRO and expanded the scope of the application of GO.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6343
Author(s):  
Burcu Gunes ◽  
Yannick Jaquet ◽  
Laura Sánchez ◽  
Rebecca Pumarino ◽  
Declan McGlade ◽  
...  

The remarkable adsorption capacity of graphene-derived materials has prompted their examination in composite materials suitable for deployment in treatment of contaminated waters. In this study, crosslinked calcium alginate–graphene oxide beads were prepared and activated by exposure to pH 4 by using 0.1M HCl. The activated beads were investigated as novel adsorbents for the removal of organic pollutants (methylene blue dye and the pharmaceuticals famotidine and diclofenac) with a range of physicochemical properties. The effects of initial pollutant concentration, temperature, pH, and adsorbent dose were investigated, and kinetic models were examined for fit to the data. The maximum adsorption capacities qmax obtained were 1334, 35.50 and 36.35 mg g−1 for the uptake of methylene blue, famotidine and diclofenac, respectively. The equilibrium adsorption had an alignment with Langmuir isotherms, while the kinetics were most accurately modelled using pseudo- first-order and second order models according to the regression analysis. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated and the adsorption process was determined to be exothermic and spontaneous.


2018 ◽  
Vol 7 (3) ◽  
pp. 844
Author(s):  
Yentaria Juli Wijaya ◽  
R Rinita ◽  
Felycia Edi Soetaredjo ◽  
Suryadi Ismadji

Nitrobenzene is one of organic compound that usually contained in industrial wastewater, which is toxic. Nitrobenzene can be found in the chemical and pesticides industry. Nitrobenzene, which also known as nitrobenzol, is dangerous organic chemical for organism because can cause death. Organic waste in aqueous solution are usually removed by adsorption. In the adsorption process, adsorbent that usually used are carbon active and organic adsorbent. Neem leaf one of organic adsorbent that effective used in the adsorption process because it has a low cost dan easy to get. In this adsorption process, neem leaf used as a adsorbent. Neem leaf powder characterization with Boehm’s titration and proxymate analysis, which contain moisture content, water content, carbon, and volatile matter. Isoterm adsorption process of  nitrobenzene is appropriated with Freundlich equation and Langmuir equation. And the result of kinetic adsorption is appropriated with pseudo first order and pseudo second order. From the experimenal result, it can be seen that adsorption of nitrobenzene by neem leaf powder is using Langmuir equation in isoterm adsorption and follow pseudo first order in kinetic adsorption.Keywords : Adsorption, neem leaf powder, nitrobenzeneAbstrakNitrobenzene merupakan salah satu zat organik yang biasanya terkandung dalam limbah industri dimana Nitrobenzene sangat sulit diolah sebelum dibuang karena sifatnya yang sangat kompleks. Limbah yang mengandung nitrobenzene ini dapat ditemukan pada industri pestisida, sabun, dan farmasi. Nitrobenzene yang juga disebut nitrobenzol, merupakan bahan kimia organik yang berbahaya bagi mahluk hidup karena dapat menyebabkan kematian. Adsorpsi adalah salah satu cara yang dapat digunakan untuk mengatasi limbah nitrobenzene ini. Dalam proses adsorpsi, bahan penyerap yang umum digunakan adalah karbon aktif dan bahan penyerap organik. Daun intaran merupakan salah satu dari bahan penyerap organik yang efektif digunakan dalam proses adsorpsi karena biayanya yang murah dan mudah didapat. Pada penelitian ini, daun intaran digunakan untuk menyerap zat organik nitrobenzene. Karakterisasi bubuk daun intaran sendiri dilakukan dengan titrasi Boehm dan analisa proximat yang meliputi kandungan abu, air, karbon, dan volatile matter. Proses isoterm adsorpsi nitrobenzene ini disesuaikan dengan persamaan Freundlich dan persamaan Langmuir, sedangkan hasil kinetika adsorpsi disesuaikan dengan menggunakan pseudo first order dan pseudo second order. Dari hasil percobaan, didapatkan hasil bahwa proses adsorpsi nitrobenzene dengan menggunakan bubuk daun intaran ini mengikuti persamaan Langmuir pada isoterm adsorpsinya dan mengikuti persamaan pseudo first order pada kinetika adsorpsinya.Kata Kunci : Adsorpsi, bubuk daun intaran, nitrobenzene


2019 ◽  
Vol 4 (12) ◽  
pp. 78-85
Author(s):  
Aboiyaa A. Ekine ◽  
Patience N. Ikenyiri ◽  
O. Hezekiah-Braye

This Research investigated the adsorption capacity of locally prepared adsorbents from Egg shells for the removal of fluoride ion in well water. It evaluated the performance of these adsorbents calcinated at 3000C and modified with 1.0M HNO3 (trioxonitrate (v)) acid. Batch adsorber was used to allow for interaction between adsorbent (grounded Egg shells) with water containing fluoride ion. The batch experiment was performed with particle size of 2.12 contact time (60, 120, 180, 240, 300min), mass dosage (5g, 10g, 15g, 20g) and temperature (250C, 300C, 400C, 500C). The modified adsorbent was characterized to determine the physiochemical properties of grounded Egg shells (GE). Also the chemical composition of the modified adsorbent was analyzed to determine the percentage of calcium element required for the uptake of the fluoride ions in water for calcium as 39.68% for grounded Egg shells (GE). Percentage adsorption increased with increase in contact time, mass dosage and temperature for the adsorbent. The adsorption capacity was also determined which also increased with increase in contact time, temperature but decreased with increase in mass dosage at constant time of 60minutes. The pseudo first-order, pseudo second order and intraparticle diffusion kinetic models were fitted into the experimental results. The results obtained indicated that the pseudo first order and intraparticle diffusion models for the grounded Egg shells (GE) reasonably described the adsorption process very well whereas the pseudo second order model was not suitable for a calcinations temperature of 3000C and particle size of 2.12m. The adsorption isotherms were obtained from equilibrium experiment Performed at temperature of 25, 35, 45 and 550C. The result showed that Langmuir and Freundlich isotherm fitted perfectly the experimental data. However, the negative values of Gibb’s free energy indicated that adsorption was favourable and the positive enthalpy change H0 revealed that adsorption process was endothermic while the positive value of the entropy change signified increased randomness with adsorption.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 340
Author(s):  
Jeanne N’Diaye ◽  
Sujittra Poorahong ◽  
Ons Hmam ◽  
Gastón Contreras Jiménez ◽  
Ricardo Izquierdo ◽  
...  

A stable and magnetic graphene oxide (GO) foam–polyethyleneimine–iron nanoparticle (GO–PEI–FeNPs) composite has been fabricated for removal of endocrine disruptors—bisphenol A, progesterone and norethisterone—from aqueous solution. The foam with porous and hierarchical structures was synthesized by reduction of graphene oxide layers coupled with co-precipitation of iron under a hydrothermal system using polyethyleneimine as a cross linker. The presence of magnetic iron nanoparticles facilitates the separation process after decontamination. The foam was fully characterized by surface and structural scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The foam exhibits a high adsorption capacity, and the maximum adsorption percentages are 68%, 49% and 80% for bisphenol A, progesterone and norethisterone, respectively. The adsorption process of bisphenol A is explained according to the Langmuir model, whereas the Freundlich model was used for progesterone and norethisterone adsorption.


2016 ◽  
Vol 16 (2) ◽  
pp. 1521-1525 ◽  
Author(s):  
Xuan Thang Cao ◽  
Ali Md. Showkat ◽  
Inpil Kang ◽  
Yeong-Soon Gal ◽  
Kwon Taek Lim

2015 ◽  
Vol 93 (10) ◽  
pp. 1083-1087 ◽  
Author(s):  
Ali Issa Ismail

Graphene is a newly discovered material and is considered to be the new wonder material for many applications. The recent possibility of obtaining pure and fully characterized graphene opens the door to the study of the adsorption of toxic materials on graphene. The adsorption behavior of p-nitrophenol on graphene was studied in aqueous medium. The effect of each of pH, temperature, and dosage was emphasized. The highest calculated adsorption capacity of 4-nitrophenol was found to be 15.5 mg/g, assuming Langmuir fitting starting from 11.1 mg/g initial concentration at 298 K and pH = 6. Fitting the data using the Freundlich isotherm model predicted a favorable adsorption process (n > 1). The rise and saturation areas of the isotherms were fitted as pseudo first-order and pseudo second-order processes, respectively, with relatively good fit (k1 = 0.0023/s, k2 = 0.68 g mg−1 s−1). The thermodynamic properties indicated a spontaneous and exothermic process.


2011 ◽  
Vol 255-260 ◽  
pp. 2810-2814
Author(s):  
Feng Jie Zhang ◽  
Xiao Xia Ou ◽  
Chun Qiu Ran ◽  
Yun Na Wu

Sorption of Pb, Zn, Cu by natural soils was investigated under conditions of variable pH, ionic strength and temperature. The results obtained from adsorption isotherm indicated that these data can be better fitted with the Freundlich equation than with the Langmuir equation in terms of regression coefficients. The parameters in the adsorption process were influenced greatly by solution pH and ionic strength. The Freundlich parameter KF increased with increasing pH and decreasing ionic strength, but the Freundlich parameter n changed adversely. Thermodynamic parameters of the process were calculated from sorption studies performed at different temperatures, and enthalpy changes (△H°) and entropy changes (△S°) of adsorption were found as -20.70 kJ/mol and 34.76 J/mol.K for Pb(II), -7.762 kJ/mol and 1.139 J/mol.K for Cu(II), -20.60 kJ/mol and 51.93 J/mol.K for Zn(II) respectively, showing that adsorption of Pb2+, Cu2+, and Zn2+ on natural soil were exothermic and spontaneous at 5-45°C.


2018 ◽  
Vol 18 (2) ◽  
pp. 222 ◽  
Author(s):  
Fatma Fatma ◽  
Poedji Loekitowati Hariani ◽  
Fahma Riyanti ◽  
Wiwin Sepriani

The alumina-activated carbon has the ability to adsorb and desorb the procion red MX-5B. The research evaluated the influence of desorption agent, contact time, and temperature on desorption process of procion red MX-5B dye with alumina-activated carbon composite and the adsorption capacity of the composite after desorption process. The desorption agents used in desorption process were solution with pH 2−10, H2O2 30 % (v/v), methanol 70% (v/v) and ethanol 70% (v/v). The variation of contact time was in the range from 30 to 270 min and the temperature was set between 30−75 °C. The result concluded that the highest desorption efficiency up to 98.56% was achieved using ethanol 70% (v/v) for 240 min at 45 °C. The desorption kinetic followed the pseudo-first-order with the release constant (kdes) of 6.56 × 10-2 min-1. The SEM micrograph showed there is a more porous surface on the composite after the desorption compared to before the desorption. The EDX analysis indicated that alumina content in the composite was reduced after desorption process. FTIR spectra of the composite before and after desorption process showed a peak of Al−O at 592 and 590 cm-1 which was proved that alumina still exists in the composite after the desorption process. The alumina-activated carbon composite was re-used to adsorb procion red MX-5B dye. After three times of desorption and re-adsorption process, the capacity adsorption was decreased from 12.38 to 7.38 mg/g.


Molekul ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 149
Author(s):  
Aldes Lesbani Lesbani ◽  
Normah Normah ◽  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Roy Andreas ◽  
...  

Layered double hydroxide (LDH) Ni/Al-NO3 was synthesized using a coprecipitation method under base condition following with intercalation using Keggin ion [a-SiW12O40]4- to form Ni/Al-[a-SiW12O40] LDH. The LDHs were characterized using XRD, FTIR, BET, and pHpzc analyses. Furthermore, LDHs were applied as adsorbent of iron(II) from aqueous solution. The adsorption process was studied through the effect of adsorption time, the concentration of iron(II), and temperature adsorption. The results show the interlayer distance of LDHs was increased from 7.408 Å to 10.533 Å after intercalation process. The adsorption of iron(II) on LDHs showed that adsorption of iron(II) on both LDHs follows pseudo first-order kinetic model with R2 value is close to one. The adsorption process was spontaneous, with adsorption capacity up to 36.496 mg g-1.


Sign in / Sign up

Export Citation Format

Share Document