scholarly journals Soldering of Passive Components Using Sn Nanoparticle Reinforced Solder Paste: Influence on Microstructure and Joint Strength

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1478
Author(s):  
Anas Atieh ◽  
Tala Abedalaziz ◽  
Abdulaziz AlHazaa ◽  
Michael Weser ◽  
Wael Al-Kouz ◽  
...  

In this study, the effects of adding Sn nanopowder (particle size < 150 nm) to three solder pastes SAC3-X(H)F3+, SCAN-Ge071-XF3+, and water washable WW50-SAC3 are evaluated regarding microstructure, morphology, joint strength, and electrical resistance. The nanopowder was added at a rate of 10% by weight and then mechanically mixed until homogenous solder paste was obtained. The results showed that the addition of Sn nanoparticles resulted in homogenous bond formation for SAC-3 and SCAN, while voids and bubbles formation slightly increased within the joint interface for the water washable solder paste. The SCAN + Sn nano reinforced solder paste showed increased variation of joint strength from 12.6 to 39.9 N, while the water washable + Sn nanopowder reinforced solder paste showed less variability in joint strength from 17.3 to 33.9 N. Both sets of solder paste with and without Sn nano reinforced solder paste showed a reliable quality joint under mechanical shock testing after six shocks in six milliseconds with an 87.1 ms pulse duration. The results showed that Sn nanoparticles resulted in a small resistance change, while RDC values (in mΩ) slightly decreased for SAC and increased for SCAN and further increases for water washable solder paste.

Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


2010 ◽  
Vol 17 (6) ◽  
pp. 787-802 ◽  
Author(s):  
Gerard Kelly ◽  
Jeff Punch ◽  
Suresh Goyal ◽  
Michael Sheehy

This theme of this paper is the design and characterisation of a velocity amplifier (VAMP) machine for high-acceleration shock testing of micro-scale devices. The VAMP applies multiple sequential impacts to amplify velocity through a system of three progressively smaller masses constrained to move in the vertical axis. Repeatable, controlled, mechanical shock pulses are created through the metal-on-metal impact between pulse shaping test rods, which form part of the penultimate and ultimate masses. The objectives are to investigate the controllable parameters that affect the shock pulses induced on collision, namely; striker and incident test rod material; test rod length; pulse shaping mechanisms; and impact velocity. The optimum VAMP configuration was established as a 60 mm long titanium striker test rod and a 120 mm long titanium incident rod. This configuration exhibited an acceleration magnitude and a primary pulse duration range of 5,800–23,400 g and 28.0–44.0μs respectively. It was illustrated that the acceleration spectral content can be manipulated through control of the test rod material and length. This is critical in the context of practical applications, where it is postulated that the acceleration signal can be controlled to effectively excite specific components in a multi-component assembly affixed to the VAMP incident test rod.


Author(s):  
Kavian Cooke ◽  
Tahir Khan

Aluminum metal matrix composites are materials frequently used in the automotive and aerospace industries due to their high strength-to-weight ratio, formability, corrosion resistance, and long-term durability. However, despite the unique properties of these materials, the lack of a reliable joining method has restricted their full potential in engineering applications. This article explores the effect of bonding time on transient liquid phase diffusion bonding of Al6061 containing 15 vol.% alumina particles using a 5 μm electrodeposited Ni-coating containing nano-sized alumina particles as the interlayer. Joint formation was attributed to the solid-state diffusion of Ni into the Al6061 alloy followed by eutectic formation and isothermal solidification at the joint interface. Examination of the joint region using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction showed the formation of eutectic phases such as Al3Ni, Al9FeNi, and Ni3Si within the joint zone. The results indicate that the addition of nano-size reinforcements into the interlayer can be used to improve joint strength. The joint strength recorded was 136 MPa at a bonding time of 10 min with a marginal increase in the shear strength when the bonding time is increased to 30 min.


1947 ◽  
Vol 51 (443) ◽  
pp. 867-873
Author(s):  
C. R. Urwin ◽  
K. H. Swainger

Summary“Potential” leads are used to put strain gauge switches and leads in series with high resistance ratio arms in a modified Wheat-stone Bridge. Thus the effects of switch contact resistance change and temperature-resistance change in leads can be minimised to any desired values. The high resistance ratio arms allow coarse resistance changes at the measuring bridge to measure the small resistance change at the gauge due to strain.High potentials are applied to the bridge to minimise the effects of thermal e.m.f.Active gauges and the temperature compensating gauges are in circuit for only a few seconds while the measurement is made.


1989 ◽  
Vol 111 (4) ◽  
pp. 294-298
Author(s):  
R. Peache ◽  
D. Privitera ◽  
J. Gasper ◽  
D. Heasty

During the past few years product mechanical shock fragility analysis has become an accepted part of the product design cycle at Wang Laboratories, Inc. This analysis is used to insure that the product has sufficient strength to work in the user environment without problem, and to survive the shipping environment from Wang to the customer without requiring excessively expensive shipping packaging. In some cases it is possible to make relatively inexpensive changes in the product which increase the mechanical shock resistance of that product. The cost of these changes is weighed against the cost of the amount of cushioning and related recurring costs needed in the shipping package to provide protection for the lower shock level the unmodified product is capable of withstanding. If the cost of product modification is lower than the cost of the increased package materials, freight and storage (increased cube), the modification is made to the product. A brief background of shock testing products is given, with particular attention to the use of ASTM D 3332. This process is presented as a specific case study on a recently developed CRT monitor.


2018 ◽  
Vol 280 ◽  
pp. 206-211 ◽  
Author(s):  
Rita Mohd Said ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Nur Ain Athirah Amran ◽  
Mohd Izrul Izwan Ramli

The evolution in microstructure of Sn-Cu based solder paste with different copper (Cu) content subjected to multiple reflow cycles was investigated. In this study, the Sn-0.7Cu (SC) solder paste was used as based material. The Cu particles were added into SC solder paste to produce new Sn-4Cu and Sn-10Cu solder paste. After that, the solder paste was then reflowed on Cu-OSP surface finished and subjected to six times reflows. Characterization focuses on the bulk solder microstructure, morphology and intermetallic compound (IMC) thickness after multiple reflows. Results reveal that solder composition significantly affect the microstructure formation and growth of IMC.


2006 ◽  
Vol 15-17 ◽  
pp. 393-397 ◽  
Author(s):  
Y. Abe ◽  
Takehiko Watanabe ◽  
H. Tanabe ◽  
K. Kagiya

Authors tried to butt-weld a mild steel plate to a magnesium alloy plate by the solid state welding using a rotating pin. This study investigated the effects of a pin rotating speed, the position for the pin axis to be plunged (pin offset) on the strength and the microstructure of the joint. The main results obtained are as follows. Butt-welding of a steel plate to a magnesium alloy plate was easily and successfully achieved. The maximum tensile strength of a joint reached about 70% of the magnesium base metal tensile strength and the fracture path was along the joint interface. When a pin rotating speed was slow, some defects appeared in the magnesium matrix due to the insufficient plasticization of the magnesium. The joint strength increased with the pin rotating speed. This seems to be because the plasticization of the magnesium was increased and the pressure for pushing the plasticized magnesium onto an activated faying surface of the steel increased. However, the excessive increase of the pin rotating speed caused the ignition of the magnesium, resulting in the decrease of a joint strength. At the pin offset of 0.1mm toward steel, steel fragments scattered in the magnesium matrix in the form of a small piece that had no influence to the joint strength. By contrast, larger offsets over 0.2mm produced the steel fragment continuous and parallel to the weld interface in the magnesium matrix, and the joint strength decreased.


2007 ◽  
Vol 353-358 ◽  
pp. 2033-2036 ◽  
Author(s):  
Ikuo Shohji ◽  
Satoshi Tsunoda ◽  
Hirohiko Watanabe ◽  
Tatsuhiko Asai

An influence of content of Ni and Ag in a Sn-Ag-Cu-Ni-Ge lead-free solder has been investigated on microstructure and joint strength of the soldered joint under heat exposure conditions. The growth kinetics of the reaction layer formed at the joint interface has been investigated, and the apparent activation energy of the reaction layer growth has been also examined. Moreover, the soldered joints with Sn-Ag and Sn-Ag-Cu solders were prepared and were compared with the joints with the Sn-Ag-Cu-Ni-Ge solders.


Sign in / Sign up

Export Citation Format

Share Document