scholarly journals Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1757
Author(s):  
Otto Todor-Boer ◽  
Ioan Petrovai ◽  
Raluca Tarcan ◽  
Adriana Vulpoi ◽  
Leontin David ◽  
...  

We show that a precise control of deposition speed during the fabrication of polyfullerenes and donor polymer films by convective self-assembly leads to an optimized film microstructure comprised of interconnected crystalline polymer domains comparable to molecular dimensions intercalated with similar polyfullerene domains. Moreover, in blended films, we have found a correlation between deposition speed, the resulting microstructure, and photoluminescence quenching. The latter appeared more intense for lower deposition speeds due to a more favorable structuring at the nanoscale of the two donor and acceptor systems in the resulting blend films.

2018 ◽  
Vol 9 (13) ◽  
pp. 3282-3289 ◽  
Author(s):  
S. Yamamoto ◽  
J. Pirillo ◽  
Y. Hijikata ◽  
Z. Zhang ◽  
K. Awaga

Using the “crystal sponge” approach, weak organic electron donor molecules were impregnated and evenly distributed in a crystal of a metal–organic framework (MOF), with the self-assembly of the donor–acceptor pairs with electron acceptor ligands. The nanopores of the MOF confined them and induced a charge transfer phenomenon, which would not occur between donor and acceptor molecules in a bulk scale.


2014 ◽  
Vol 174 ◽  
pp. 297-312 ◽  
Author(s):  
Hayden T. Black ◽  
Huaping Lin ◽  
Francine Bélanger-Gariépy ◽  
Dmitrii F. Perepichka

The supramolecular structure of organic semiconductors (OSCs) is the key parameter controlling their performance in organic electronic devices, and thus methods for controlling their self-assembly in the solid state are of the upmost importance. Recently, we have demonstrated the co-assembly of p- and n-type organic semiconductors through a three-point hydrogen-bonding interaction, utilizing an electron-rich dipyrrolopyridine (P2P) heterocycle which is complementary to naphthalenediimides (NDIs) both in its electronic structure and H bonding motif. The hydrogen-bonding-mediated co-assembly between P2P donor and NDI acceptor leads to ambipolar co-crystals and provides unique structural control over their solid-state packing characteristics. In this paper we expand our discussion on the crystal engineering aspects of H bonded donor–acceptor assemblies, reporting three new single co-crystal X-ray diffraction structures and analyzing the different packing characteristics that arise from the molecular structures employed. Particular attention is given toward understanding the formation of the two general motifs observed, segregated and mixed stacks. Co-assembly of the donor and acceptor components into a single, crystalline material, allows the creation of ambipolar semiconductors where the mutual arrangement of p- and n-conductive channels is engineered by supramolecular design based on complementary H bonding.


Soft Matter ◽  
2020 ◽  
Vol 16 (31) ◽  
pp. 7312-7322
Author(s):  
Krishnan Deepthi ◽  
Amal Raj R B ◽  
Vadakkethonippurathu Sivankuttynair Prasad ◽  
E. Bhoje Gowd

Here, we demonstrate the three-component self-assembly of functionalized small molecules (donor and acceptor) and a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer using the supramolecular approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.


2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2011 ◽  
Vol 133 (47) ◽  
pp. 19125-19130 ◽  
Author(s):  
Siyu Tu ◽  
Se Hye Kim ◽  
Jojo Joseph ◽  
David A. Modarelli ◽  
Jon R. Parquette
Keyword(s):  

2021 ◽  
Author(s):  
Baku Nagendra ◽  
Paola Rizzo ◽  
Christophe Daniel ◽  
Gaetano Guerra

2015 ◽  
Vol 3 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Sheng Zhu ◽  
Hui Zhang ◽  
Ping Chen ◽  
Lin-Hui Nie ◽  
Chuan-Hao Li ◽  
...  

A facile protocol for the self-assembly of the rGO/β-MnO2 hybrid hydrogel with ultrafine structure and precise control of mass-loading for high performance supercapacitors is reported.


1999 ◽  
Vol 68 (6) ◽  
pp. 1117-1120 ◽  
Author(s):  
C. Wang ◽  
H. Fei ◽  
J. Xia ◽  
Y. Yang ◽  
Z. Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document