scholarly journals Iron Biofortified Carioca Bean (Phaseolus vulgaris L.)—Based Brazilian Diet Delivers More Absorbable Iron and Affects the Gut Microbiota In Vivo (Gallus gallus)

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1970 ◽  
Author(s):  
Desirrê Dias ◽  
Nikolai Kolba ◽  
Dana Binyamin ◽  
Oren Ziv ◽  
Marilia Regini Nutti ◽  
...  

Biofortification aims to improve the micronutrient concentration and bioavailability in staple food crops. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification are scarce. In this study, we performed a 6-week feeding trial in Gallus gallus (n = 15), aimed to investigate the Fe status and the alterations in the gut microbiome following the administration of Fe-biofortified carioca bean based diet (BC) versus a Fe-standard carioca bean based diet (SC). The tested diets were designed based on the Brazilian food consumption survey. Two primary outcomes were observed: (1) a significant increase in total body Hb-Fe values in the group receiving the Fe-biofortified carioca bean based diet; and (2) changes in the gut microbiome composition and function were observed, specifically, significant changes in phylogenetic diversity between treatment groups, as there was increased abundance of bacteria linked to phenolic catabolism, and increased abundance of beneficial SCFA-producing bacteria in the BC group. The BC group also presented a higher intestinal villi height compared to the SC group. Our results demonstrate that the Fe-biofortified carioca bean variety was able to moderately improve Fe status and to positively affect the intestinal functionality and bacterial populations.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1324-1324
Author(s):  
Robert Rossi ◽  
Nikita Agarwal ◽  
Jacquelyn Cheng

Abstract Objectives Systematically analyze in-vivo (Gallus gallus) experimental studies that evaluate the effects of Fe and Zn biofortified foods or their derivatives on gut microbiota modulation. Methods The review was carried out in accordance with the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) guidelines. Two researchers independently performed the data search at PubMed, Web of Science, Science Direct, and Scopus databases for experimental studies conducted in animal models published from January 2010 until December 2020. Five studies from the collection of 592 were selected based on the inclusion and exclusion criteria and analyzed. Results The studies indicated the dietary consumption of about 50% Fe and Zn biofortified foods provided several health benefits and improved the gut microbiome. Consumption of Fe and Zn biofortified foods was linked to increased abundance and capacity of short chain fatty acids and lactic acid producing bacteria, resulting in improved micronutrient solubility and absorption in the host. Further, a decrease in potentially pathogenic bacteria such as Streptococcus, Escherichia, and Enterobacter was linked to the consumption of Fe and Zn biofortified foods. Conclusions Dietary deficiencies of iron and zinc are common health concerns worldwide. Bacteria that colonize the gastrointestinal tract depend on micronutrients to maintain their activities, and gut microbiota compositional analysis may be an effective tool to assess host micronutrient status. This review suggests that Fe and Zn biofortified foods utilization positively restructures the gut microbiome and improves micronutrient absorption, thereby improving human health in vulnerable populations and maintaining micronutrient status in healthy populations. Further clinical and animal studies are needed to support the effects mentioned above. Funding Sources N/A.


2020 ◽  
Author(s):  
Dong-Juan Xu ◽  
Kai Cheng Wang ◽  
Lin-Bo Yuan ◽  
Qiong-Qiong Lin ◽  
Hong-Fei Li ◽  
...  

Abstract Background — With the establishment of the concept of the gut–brain axis, increasing evidence has shown that the gut microbiome plays an important role in the pathogenesis of cardiovascular diseases. Gut bacteria can transform dietary choline, L-carnitine, and trimethylamine N -oxide (TMAO) into trimethylamine, which can be oxidized into TMAO again in the liver and participate in atherogenesis. However, only few studies have described alterations in the gut microbiota composition and function in cardioembolic (CE) and large artery atherosclerotic (LAA) strokes. Methods and Results — A case–control study was performed on patients with LAA and CE strokes. TMAO was determined via liquid chromatography tandem mass spectrometry. Gut microbiome was profiled through Illumina sequencing of the 16S ribosomal RNA gene (V4–V5 regions). The TMAO levels in the plasma of patients with LAA and CE strokes were significantly increased (TMAO: LAA stroke, 2931±456.4 ng/mL vs. CE stroke, 4220±577.6 ng/mL vs. control, 1663±117.8 ng/mL; P < 0.05). The TMAO level in patients with LAA stroke was positively correlated with the carotid plaque area (rho = 0.333, 95% confidence interval = 0.08 to 0.55, and P = 0.0093). The composition and function of gut microbiomes in the LAA and CE stroke groups were significantly different from those of the asymptomatic control. In addition to the significantly increased α and β diversities, the gut microbiome composition and function showed that the LAA group had more microorganisms than the asymptomatic control group; such microorganisms convert dietary source choline, TMAO to TMA. Parabacteroides and Streptococcus exhibited the strongest association with LAA and CE strokes. Conclusions — This study established the compositional and functional alterations of gut microbiomes in patients with LAA and CE strokes and the relationship between plasma TMAO and gut microbiota. The findings suggest the potential of using gut microbiota as a biomarker for patients with LAA and CE strokes.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3247
Author(s):  
Mariana Juste Contin Gomes ◽  
Nikolai Kolba ◽  
Nikita Agarwal ◽  
Dean Kim ◽  
Adi Eshel ◽  
...  

This efficacy trial evaluated the effects of two polyphenolic stilbenes, resveratrol and pterostilbene, mostly found in grapes, on the brush border membrane functionality, morphology and gut microbiome. This study applied the validated Gallus gallus intra-amniotic approach to investigate the effects of stilbene administration versus the controls. Three treatment groups (5% resveratrol; 5% pterostilbene; and synergistic: 4.75% resveratrol and 0.25% pterostilbene) and three controls (18 MΩ H2O; no injection; 5% inulin) were employed. We observed beneficial morphological changes, specifically an increase in the villus length, diameter, depth of crypts and goblet cell diameter in the pterostilbene and synergistic groups, with concomitant increases in the serum iron and zinc concentrations. Further, the alterations in gene expression of the mineral metabolism proteins and pro-inflammatory cytokines indicate a potential improvement in gut health and mineral bioavailability. The cecal microbiota was analyzed using 16S rRNA sequencing. A lower α-diversity was observed in the synergistic group compared with the other treatment groups. However, beneficial compositional and functional alterations in the gut microbiome were detected. Several key microbial metabolic pathways were differentially enriched in the pterostilbene treatment group. These observations demonstrate a significant bacterial–host interaction that contributed to enhancements in intestinal functionality, morphology and physiological status. Our data demonstrate a novel understanding of the nutritional benefits of dietary stilbenes and their effects on intestinal functionality, morphology and gut microbiota in vivo.


2018 ◽  
Author(s):  
Sudarshan A. Shetty

AbstractPopulation-level microbial profiling allows for identifying the overarching features of the microbiome. Knowledge of population specific base-line gut microbiome features is important due to the widely reported impact of geography, lifestyle and dietary patterns on the microbiome composition, structure and function. Here, the gut microbiota of more than 1000 subjects across the length and breadth of India is presented. The publicly available 16S rRNA gene profiling data of faecal microbiota from the Landscape Of Gut Microbiome - Pan-India Exploration (LogMPIE) study representing 14 major cities, covering populations from northern, southern, eastern and western part of India analyzed. Majority of the dominant OTUs belonged to the Firmicutes, Bacteroidetes and Proteobacteria phyla. The rarer fraction was comprised of OTUs mainly from the phyla Verrucomicrobia and Spirochaetes. The median core size was estimated to consist of 12 OTUs (>80% prevalence) dominated by representing genera Prevotella, Faecalibacterium, Bacteroides, Roseburia, Megasphaera, Eubacterium and Gemmiger. Geographic location explained majority of the variation in the gut microbiota community structure. The observations of the present study support the previous reports of Prevotella dominance in the Indian population. The Prevotella/Bacteroides ratio was high for the overall population irrespective of geographic location and did not correlate with BMI or age of the participants. Despite a rapid transition towards a western lifestyle, high prevalence of Treponema in the Indian gut microbiota suggests that the urban population still harbors signatures of the traditional gut microbiome. The results presented here improve the knowledge of baseline microbiota in the Indian population across the length and breadth of the country. This study provides a base for future studies which need to incorporate numerous other confounding factors and their impact on the observed characteristics of the Indian gut microbiome.


2020 ◽  
Author(s):  
Shanshan Yu ◽  
Yangyang Xiong ◽  
Yangyang Fu ◽  
Guorong Chen ◽  
Huadong Zhu ◽  
...  

Abstract Background: Acute pancreatitis (AP) has a broad spectrum of severity and is associated with considerable morbidity and mortality. We aimed to evaluate the composition and functional effects of gut microbiota in different grades of AP severity. Results: Gut microbiota in AP patients was characterized by decreased species richness. The most representative gut microbiota in mild acute pancreatitis (MAP), moderately severe acute pancreatitis (MSAP), and severe acute pancreatitis (SAP) was Streptococcus, Escherichia-coli, and Enterococcus, respectively. Each of the three AP-associated genera could differentiate AP from healthy control population. Representative pathways associated with the glutathione metabolism, lipopolysaccharide biosynthesis, and amino acid metabolism (valine, leucine and isoleucine degradation) were enriched in MAP, MSAP, and SAP, respectively. Conclusions: Our findings indicate that in patients with AP, the gut microbiome composition and function are correlated with different severity of AP from a whole-genome perspective, and new changes are observed.


2020 ◽  
Author(s):  
Dong-Juan Xu ◽  
Kaicheng Wang ◽  
Lin-Bo Yuan ◽  
Qiong-Qiong Lin ◽  
Hong-Fei Li ◽  
...  

Abstract Background — With the establishment of the concept of the gut–brain axis, increasing evidence has shown that the gut microbiome plays an important role in the pathogenesis of cardiovascular diseases. Gut bacteria can transform dietary choline, L-carnitine, and trimethylamine N-oxide (TMAO) into trimethylamine, which can be oxidized into TMAO again in the liver and participate in atherogenesis. However, only few studies have described alterations in the gut microbiota composition and function in cardioembolic (CE) and large artery atherosclerotic (LAA) strokes.Methods and Results — A case–control study was performed on patients with LAA and CE strokes. TMAO was determined via liquid chromatography tandem mass spectrometry. Gut microbiome was profiled through Illumina sequencing of the 16S ribosomal RNA gene (V4–V5 regions). The TMAO levels in the plasma of patients with LAA and CE strokes were significantly increased (TMAO: LAA stroke, 2931±456.4 ng/mL vs. CE stroke, 4220±577.6 ng/mL vs. control, 1663±117.8 ng/mL; P < 0.05). The TMAO level in patients with LAA stroke was positively correlated with the carotid plaque area (rho = 0.333, 95% confidence interval = 0.08 to 0.55, and P = 0.0093). The composition and function of gut microbiomes in the LAA and CE stroke groups were significantly different from those of the asymptomatic control. In addition to the significantly increased α and β diversities, the gut microbiome composition and function showed that the LAA group had more microorganisms than the asymptomatic control group; such microorganisms convert dietary source choline, TMAO to TMA. Parabacteroides and Streptococcus exhibited the strongest association with LAA and CE strokes.Conclusions — This study established the compositional and functional alterations of gut microbiomes in patients with LAA and CE strokes and the relationship between plasma TMAO and gut microbiota. The findings suggest the potential of using gut microbiota as a biomarker for patients with LAA and CE strokes.


2021 ◽  
Author(s):  
John P Haran ◽  
Jose C Pinero ◽  
Yan Zheng ◽  
Norma Alonzo-Palma ◽  
Mark Wingertzahn

Abstract Objectives These 2 parallel studies (K031 and K032) aim to evaluate the safety of KB109 in addition to supportive self-care (SSC) compared with SSC alone in outpatients with mild to moderate coronavirus disease 2019 (COVID-19). KB109 is a novel synthetic glycan that was formulated to modulate the gut microbiome composition and metabolic output in order to increase beneficial short-chain fatty acid (SCFA) production in the gut. The K031 study is designed to evaluate the safety of KB109 and characterize its impact on the natural progression of COVID-19 in patients with mild to moderate disease. The K032 study is evaluating the effect of KB109 on the gut microbiota structure and function in this same patient population. Additionally, both studies are evaluating measures of health care utilization, quality of life (QOL), laboratory indices, biomarkers of inflammation, and serological measures of immunity in patients who received SSC alone or with KB109. Noteworthy aspects of these outpatient studies include study design measures aimed at limiting in-person interactions to minimize the risk of infection spread, such as use of online diaries, telemedicine, and at-home sample collection.


2020 ◽  
Author(s):  
Kathy N. Lam ◽  
Peter Spanogiannopoulos ◽  
Paola Soto-Perez ◽  
Margaret Alexander ◽  
Matthew J. Nalley ◽  
...  

AbstractThe recognition that the gut microbiome has a profound influence on human health and disease has spurred efforts to manipulate gut microbial community structure and function. Though various strategies for microbiome engineering have been proposed, methods for phage-based genetic manipulation of resident members of the gut microbiota in vivo are currently lacking. Here, we show that bacteriophage can be used as a vector for delivery of plasmid DNA to bacteria colonizing the gastrointestinal tract, using filamentous phage M13 and Escherichia coli engrafted in the gut microbiota of mice. We employ M13 to deliver CRISPR-Cas9 for sequence-specific targeting of E. coli leading to depletion of one strain of a pair of fluorescently marked isogenic strains competitively colonizing the gut. We further show that when mice are colonized by a single E. coli strain, it is possible for M13-delivered CRISPR-Cas9 to induce genomic deletions that encompass the targeted gene. Our results suggest that rather than being developed for use as an antimicrobial in the gut microbiome, M13-delivered CRISPR-Cas9 may be better suited for targeted genomic deletions in vivo that harness the robust DNA repair response of bacteria. With improved methods to mitigate undesired escape mutations, we envision these strategies may be developed for targeted removal of strains or genes present in the gut microbiome that are detrimental to the host. These results provide a highly adaptable platform for in vivo microbiome engineering using phage and a proof-of-concept for the establishment of phage-based tools for a broader panel of human gut bacteria.


mSystems ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Ce Yuan ◽  
Michael B. Burns ◽  
Subbaya Subramanian ◽  
Ran Blekhman

ABSTRACT Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes , Bacteroidetes , and Proteobacteria . Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


Sign in / Sign up

Export Citation Format

Share Document