scholarly journals Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes

Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 408 ◽  
Author(s):  
John Adulcikas ◽  
Sabrina Sonda ◽  
Shaghayegh Norouzi ◽  
Sukhwinder Sohal ◽  
Stephen Myers

Type 2 diabetes mellitus (T2DM) is a disease associated with dysfunctional metabolic processes that lead to abnormally high levels of blood glucose. Preceding the development of T2DM is insulin resistance (IR), a disorder associated with suppressed or delayed responses to insulin. The effects of this response are predominately mediated through aberrant cell signalling processes and compromised glucose uptake into peripheral tissue including adipose, liver and skeletal muscle. Moreover, a major factor considered to be the cause of IR is endoplasmic reticulum (ER) stress. This subcellular organelle plays a pivotal role in protein folding and processes that increase ER stress, leads to maladaptive responses that result in cell death. Recently, zinc and the proteins that transport this metal ion have been implicated in the ER stress response. Specifically, the ER-specific zinc transporter ZIP7, coined the “gate-keeper” of zinc release from the ER into the cytosol, was shown to be essential for maintaining ER homeostasis in intestinal epithelium and myeloid leukaemia cells. Moreover, ZIP7 controls essential cell signalling pathways similar to insulin and activates glucose uptake in skeletal muscle. Accordingly, ZIP7 may be essential for the control of ER localized zinc and mechanisms that disrupt this process may lead to ER-stress and contribute to IR. Accordingly, understanding the mechanisms of ZIP7 action in the context of IR may provide opportunities to develop novel therapeutic options to target this transporter in the treatment of IR and subsequent T2DM.

2019 ◽  
Vol 20 (21) ◽  
pp. 5271 ◽  
Author(s):  
Matthew T. Lewis ◽  
Jonathan D. Kasper ◽  
Jason N. Bazil ◽  
Jefferson C. Frisbee ◽  
Robert W. Wiseman

Type 2 diabetes (T2D) is a growing health concern with nearly 400 million affected worldwide as of 2014. T2D presents with hyperglycemia and insulin resistance resulting in increased risk for blindness, renal failure, nerve damage, and premature death. Skeletal muscle is a major site for insulin resistance and is responsible for up to 80% of glucose uptake during euglycemic hyperglycemic clamps. Glucose uptake in skeletal muscle is driven by mitochondrial oxidative phosphorylation and for this reason mitochondrial dysfunction has been implicated in T2D. In this review we integrate mitochondrial function with physiologic function to present a broader understanding of mitochondrial functional status in T2D utilizing studies from both human and rodent models. Quantification of mitochondrial function is explained both in vitro and in vivo highlighting the use of proper controls and the complications imposed by obesity and sedentary lifestyle. This review suggests that skeletal muscle mitochondria are not necessarily dysfunctional but limited oxygen supply to working muscle creates this misperception. Finally, we propose changes in experimental design to address this question unequivocally. If mitochondrial function is not impaired it suggests that therapeutic interventions and drug development must move away from the organelle and toward the cardiovascular system.


2018 ◽  
Vol 50 (08) ◽  
pp. 627-639 ◽  
Author(s):  
Gretha Boersma ◽  
Emil Johansson ◽  
Maria Pereira ◽  
Kerstin Heurling ◽  
Stanko Skrtic ◽  
...  

AbstractWe assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r=0.884, r=0.574, r=0.707 and r=0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r=–0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2=0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r=0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.


2005 ◽  
Vol 34 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Young Ho Suh ◽  
Younyoung Kim ◽  
Jeong Hyun Bang ◽  
Kyoung Suk Choi ◽  
June Woo Lee ◽  
...  

Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.


2021 ◽  
Author(s):  
Qian Zhou ◽  
Wan-Wan Sun ◽  
Jia-Cong Chen ◽  
Huilu Zhang ◽  
Jie Liu ◽  
...  

Abstract Although elevated circulating amino acids are associated with the onset of type 2 diabetes (T2D), how amino acids act on cell insulin signaling and glucose uptake remains unclear. Herein, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or overexpressing human phenylalanyl-tRNA synthetase (hFARS) developed insulin resistance and symptoms of T2D. Mechanistically, FARS phenylalanylated lysine 1057/1079 of IRβ (F-K1057/1079) inactivated IRβ and prevented insulin from generating insulin signaling to promote glucose uptake by cells. SIRT1 reversed F-K1057/1079 and counteracted the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels of white cells of T2D patients’ blood samples were positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitized insulin signaling and relieved T2D symptoms in hFARS-transgenic and db/db mice. We revealed mechanisms of how phenylalanylation inactivates insulin signaling that may be employed to control T2D.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sophie E Piper ◽  
James M Leiper

Type 2 diabetes is a prevalent metabolic condition and is the result of an impaired response to insulin. Insulin resistance and type 2 diabetes are clearly associated with obesity and the secondary cardiovascular complications of this condition are serious and life threatening. Asymemetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases and increased levels are seen in multiple pathologies. Increased plasma levels of ADMA have been associated with patients with type 2 diabetes, insulin resistance and obesity, although a causal link between ADMA and diabetes has not been established. Dimethylarginine dimethylaminohydrolase (DDAH) is the enzyme that catalyses the metabolism of ADMA. There are two isoforms of the enzyme which are both involved in the control of ADMA and NO. The interplay of insulin with NO release is well established but the initial causes for the onset of insulin resistance are not well defined. Elevated levels of ADMA are linked to insulin resistance and transgenic mice that over-express ddah1 show increased insulin sensitivity. Of note is that metformin, an insulin sensitising drug that is widely used in the treatment of insulin resistance, reduces plasma glucose and ADMA concentrations. In order to elucidate the physiological role of DDAH1 in glucose homeostasis we investigated the glucose handling in a ddah1 global knockout model. Intra-peritoneal glucose tolerance tests in ddah1 global knockout mice demonstrate insulin resistance. Baseline plasma glucose levels were 25% higher in ddah1 knockouts and peak levels were 53% higher in ddah1 knockouts. The kinetics of plasma glucose accumulation and clearance in ddah1 knockout mice suggests dysfunction in both the liver and skeletal muscle. On a normal chow diet, hepatocyte specific ddah1 knockout mice and skeletal muscle specific ddah1 knockout mice show no insulin resistance. On a high fat diet however the hepatocyte specific ddah1 knockout mice show significant insulin resistance and lower metabolic rate than their fat fed wild-type counterparts. These studies demonstrate for the first time a causal link between ADMA accumulation and insulin resistance. Furthermore these data establish DDAH1 activity is a significant regulator of insulin resistance.


2019 ◽  
Vol 8 (9) ◽  
pp. 1385 ◽  
Author(s):  
Burgos-Morón ◽  
Abad-Jiménez ◽  
Marañón ◽  
Iannantuoni ◽  
Escribano-López ◽  
...  

Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.


2015 ◽  
Vol 37 (6) ◽  
pp. 2288-2296 ◽  
Author(s):  
Bartlomiej Łukaszuk ◽  
Krzysztof Kurek ◽  
Agnieszka Mikłosz ◽  
Małgorzata Żendzian-Piotrowska ◽  
Adrian Chabowski

Currently, obesity is a predominant medical condition and an important risk factor for the development of several diseases, including type 2 diabetes mellitus. Importantly, most research has indicated lipid-induced insulin resistance in skeletal muscles is a key link between the aforementioned pathological conditions. PGC-1α is a prominent regulator of myocellular energy metabolism orchestrating gene transcription programming in response to numerous environmental stimuli. Moreover, it is widely acknowledged that mitochondrial metabolism (primary metabolic target of PGC-1α) disturbances are widely acknowledged contributors to type 2 diabetes development. Therefore, it seems surprising that the exact physiological contribution of PGC-1α in the development of insulin resistance in skeletal muscle remains poorly understood. This review aims to reconcile these allegedly different findings by looking for a common denominator in the role(s) of PGC-1α in respect to lipid-induced insulin resistance in skeletal muscle. Our scrutiny of the literature indicates that interventions at the level of PGC-1α may exert beneficial effects on myocytes in respect to lipid-induced insulin resistance. The latter takes place as a result of a positive net energy balance (fatty acids oxidation surpassing their accumulation rate). Moreover, the aforementioned effects may not necessarily be limited to physically active states. They seem to occur, however, only within a physiologically observed range in muscle cells (approximately 1-fold changes in PGC-1α protein expression).


Sign in / Sign up

Export Citation Format

Share Document