scholarly journals Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1633 ◽  
Author(s):  
Andrea Ticinesi ◽  
Antonio Nouvenne ◽  
Nicoletta Cerundolo ◽  
Pamela Catania ◽  
Beatrice Prati ◽  
...  

Human gut microbiota is able to influence the host physiology by regulating multiple processes, including nutrient absorption, inflammation, oxidative stress, immune function, and anabolic balance. Aging is associated with reduced microbiota biodiversity, increased inter-individual variability, and over-representation of pathobionts, and these phenomena may have great relevance for skeletal muscle mass and function. For this reason, the presence of a gut-muscle axis regulating the onset and progression of age-related physical frailty and sarcopenia has been recently hypothesized. In this narrative review, we summarize the studies supporting a possible association between gut microbiota-related parameters with measures of muscle mass, muscle function, and physical performance in animal models and humans. Reduced muscle mass has been associated with distinct microbiota composition and reduced fermentative capacity in mice, and the administration of probiotics or butyrate to mouse models of muscle wasting has been associated with improved muscle mass. However, no studies have targeted the human microbiome associated with sarcopenia. Limited evidence from human studies shows an association between microbiota composition, involving key taxa such as Faecalibacterium and Bifidobacterium, and grip strength. Similarly, few studies conducted on patients with parkinsonism showed a trend towards a different microbiota composition in those with reduced gait speed. No studies have assessed the association of fecal microbiota with other measures of physical performance. However, several studies, mainly with a cross-sectional design, suggest an association between microbiota composition and frailty, mostly assessed according to the deficit accumulation model. Namely, frailty was associated with reduced microbiota biodiversity, and lower representation of butyrate-producing bacteria. Therefore, we conclude that the causal link between microbiota and physical fitness is still uncertain due to the lack of targeted studies and the influence of a large number of covariates, including diet, exercise, multimorbidity, and polypharmacy, on both microbiota composition and physical function in older age. However, the relationship between gut microbiota and physical function remains a very promising area of research for the future.

2020 ◽  
Vol 76 (1) ◽  
pp. 115-122
Author(s):  
Samaneh Farsijani ◽  
Adam J Santanasto ◽  
Iva Miljkovic ◽  
Robert M Boudreau ◽  
Bret H Goodpaster ◽  
...  

Abstract Background Age-related deposition of fat in skeletal muscle is associated with functional limitations. Skeletal muscle fat may be present in people with preserved muscle mass or accompanied by muscle wasting. However, it is not clear if the association between muscle fat deposition and physical performance is moderated by muscle mass. Objective To determine whether the association between midthigh intermuscular fat and physical performance is moderated by muscle area. Methods We performed a cross-sectional analysis of the Health, Aging, and, Body Composition (ABC) study data collected in 2002–2003 (n = 1897, women: 52.2%). Midthigh muscle cross-sectional area (by computed tomography) and physical performance measures were compared across quartiles of intermuscular fat absolute area. Moderation analysis was performed to determine the conditional effect of intermuscular fat on physical performance as a function of muscle area. Conditional effects were evaluated at three levels of muscle area (mean and ± 1 standard deviation [SD]; 213.2 ± 53.2 cm2). Results Simple slope analysis showed that the negative association between intermuscular fat area (cm2) and leg strength (N·m) was of greater magnitude (beta coefficient [b], 95% confidence interval [CI] = −0.288 [−0.427, −0.148]) in participants with greater muscle area (ie, 1 SD above the mean) compared to those with lower muscle area (ie, at mean [b = −0.12 {−0.248, 0.008}] or 1 SD below the mean [b = 0.048 {−0.122, 0.217}]). Similarly, the negative association of intermuscular fat with 400-m walk speed (m/s) and chair stand (seconds) was greater in those with higher muscle areas (p < .001) compared to those with lower muscle areas. Conclusions The association between higher intermuscular fat area and impaired physical function in aging is moderated by muscle area.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Armando Luis Negri ◽  
Ruben Abdala ◽  
Elisa Del Valle ◽  
Pablo Bridoux ◽  
Luciana Gonzalez Paganti ◽  
...  

Abstract Background and Aims Sarcopenia is the loss of skeletal muscle mass and function that occurs with aging. These modifications lead to greater morbidity and mortality as a result of falls, hospitalization, depression and dependence among others. Chronic Kidney disease (CKD) and hemodialysis (HD) produce a favorable environment for the development of sarcopenia. Objective: to study the prevalence of sarcopenia and its different components (muscle mass, strength and physical performance) using EWGSOP 2018 proposed criteria. Method cross-sectional study evaluating 100 adult HD patients. We evaluated: Grip strength (GS) with Jamar Hydraulic Hand Dynamometer (three determinations in the arm without fistula); Appendicular lean mass (ALM) by DXA (GE LUNAR Prodigy Advance) and physical performance: Gait-speed (Time needed to perform a 4-meter walk on a flat surface) and the sit-stand test Results 58 males (M) and 42 females (F). Mean age for M was 54.3 years and 58 years for F. The prevalence of sarcopenia was 18% in the whole group, 10% in M and 20% in F. In M 33% had low GS and 26% low ALM. In M GS correlated with ALM, Albumin and weight p<0.05 (R 2 0.41); ALM correlated with weight r 0.75, height r 0.64 and GS r 0.46 (p<0.05). In F, 27% had low GS, 54% low ALM, and 17% poor physical performance. In F, GS correlated positively with ALM; ALM correlated positively with: weight r 0.78, height r 0.66, GS r 0.59 and sit-stand r 0.40 (p<0.5). Patients with lower grip strength had a higher prevalence of falls in the last year (40% two or more falls) p=0.03. Conclusion A significant proportion of dialysis patients had sarcopenia. Low hand grip strength was associated with a higher prevalence of falls. Recognizing sarcopenia in dialysis patients would allow us to develop strategies to prevent falls and other complications.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Toshitaka Odamaki ◽  
Kumiko Kato ◽  
Hirosuke Sugahara ◽  
Nanami Hashikura ◽  
Sachiko Takahashi ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Etsuhiro Nikkuni ◽  
Takashi Hirama ◽  
Kazuki Hayasaka ◽  
Sakiko Kumata ◽  
Shinichi Kotan ◽  
...  

Abstract Background Lung transplant (LTX) can provide a survival benefit and improve physical function for selected patients with advanced pulmonary disease. Sarcopenia is a systemic muscle-failure that can be found in a variety of life stages and disabilities. In this study, we follow the evolution of each variable defined in sarcopenia and the outcomes in LTX recipients with post-transplant sarcopenia. Methods Patients who underwent LTX at Tohoku University Hospital between 2013 and 2018 were consecutively included in the retrospective cohort study, with follow-up to 2019. Sarcopenia was defined by low muscle mass (the cross-sectional area (CSA) of erector spinae muscle (ESM) in thoracic CT with a threshold < 17.24 cm2/m2) and either low muscle strength (hand-grip with a threshold of < 26 kg in males and of < 18 kg in females) or physical performance (6-min walk distance with a threshold < 46.5% of predicted distance). Results Fifty-five recipients were included into the study, of whom 19 patients were defined as sarcopenic and 36 as non-sarcopenic. The muscle mass improved after transplant in both sarcopenic and non-sarcopenic individuals: the median ESM-CSA enlarged from 17.25 cm2/m2 in 2 months post-LTX to 18.55 cm2/m2 in 12 months (p < 0.001) and 17.63 cm2/m2 in 36 months (p < 0.001) in non-sarcopenic individuals, while in sarcopenic patients it improved from 13.36 cm2/m2 in 2 months to 16.31 cm2/m2 in 12 months (p < 0.005) and 18.01 cm2/m2 in 36 months (p < 0.001). The muscle mass in sarcopenia substantially recovered to close to non-sarcopenic conditions within 36-months (p < 0.001 in 2 months and p = 0.951 in 36 months). Accordingly, muscle strength and physical performance in both groups improved over time. No difference in survival was seen in both groups (Log-rank p = 0.096), and sarcopenia was not associated with an overall hazard of death (p = 0.147). There was no difference in the cumulative incidence of chronic lung allograft dysfunction between patients with or without sarcopenia (Log-rank p = 0.529). Conclusions Even patients with post-transplant sarcopenia have a chance to recover physical function to levels close to those without sarcopenia several years post LTX.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


2020 ◽  
Vol 71 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ilias Attaye ◽  
Sara-Joan Pinto-Sietsma ◽  
Hilde Herrema ◽  
Max Nieuwdorp

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Gaorui Bian ◽  
Gregory B. Gloor ◽  
Aihua Gong ◽  
Changsheng Jia ◽  
Wei Zhang ◽  
...  

ABSTRACT We report the large-scale use of compositional data analysis to establish a baseline microbiota composition in an extremely healthy cohort of the Chinese population. This baseline will serve for comparison for future cohorts with chronic or acute disease. In addition to the expected difference in the microbiota of children and adults, we found that the microbiota of the elderly in this population was similar in almost all respects to that of healthy people in the same population who are scores of years younger. We speculate that this similarity is a consequence of an active healthy lifestyle and diet, although cause and effect cannot be ascribed in this (or any other) cross-sectional design. One surprising result was that the gut microbiota of persons in their 20s was distinct from those of other age cohorts, and this result was replicated, suggesting that it is a reproducible finding and distinct from those of other populations. The microbiota of the aged is variously described as being more or less diverse than that of younger cohorts, but the comparison groups used and the definitions of the aged population differ between experiments. The differences are often described by null hypothesis statistical tests, which are notoriously irreproducible when dealing with large multivariate samples. We collected and examined the gut microbiota of a cross-sectional cohort of more than 1,000 very healthy Chinese individuals who spanned ages from 3 to over 100 years. The analysis of 16S rRNA gene sequencing results used a compositional data analysis paradigm coupled with measures of effect size, where ordination, differential abundance, and correlation can be explored and analyzed in a unified and reproducible framework. Our analysis showed several surprising results compared to other cohorts. First, the overall microbiota composition of the healthy aged group was similar to that of people decades younger. Second, the major differences between groups in the gut microbiota profiles were found before age 20. Third, the gut microbiota differed little between individuals from the ages of 30 to >100. Fourth, the gut microbiota of males appeared to be more variable than that of females. Taken together, the present findings suggest that the microbiota of the healthy aged in this cross-sectional study differ little from that of the healthy young in the same population, although the minor variations that do exist depend upon the comparison cohort. IMPORTANCE We report the large-scale use of compositional data analysis to establish a baseline microbiota composition in an extremely healthy cohort of the Chinese population. This baseline will serve for comparison for future cohorts with chronic or acute disease. In addition to the expected difference in the microbiota of children and adults, we found that the microbiota of the elderly in this population was similar in almost all respects to that of healthy people in the same population who are scores of years younger. We speculate that this similarity is a consequence of an active healthy lifestyle and diet, although cause and effect cannot be ascribed in this (or any other) cross-sectional design. One surprising result was that the gut microbiota of persons in their 20s was distinct from those of other age cohorts, and this result was replicated, suggesting that it is a reproducible finding and distinct from those of other populations.


2015 ◽  
Vol 25 (4) ◽  
pp. 249 ◽  
Author(s):  
Jan Cvecka ◽  
Veronika Tirpakova ◽  
Milan Sedliak ◽  
Helmut Kern ◽  
Winfried Mayr ◽  
...  

Aging is a multifactorial irreversible process associated with significant decline in muscle mass and neuromuscular functions. One of the most efficient methods to counteract age-related changes in muscle mass and function is physical exercise. An alternative effective intervention to improve muscle structure and performance is electrical stimulation. In the present work we present the positive effects of physical activity in elderly and a study where the effects of a 8-week period of functional electrical stimulation and strength training with proprioceptive stimulation in elderly are compared.


1998 ◽  
Vol 26 (4) ◽  
pp. 598-602 ◽  
Author(s):  
Donald T. Kirkendall ◽  
William E. Garrett

Aging results in a gradual loss of muscle function, and there are predictable age-related alterations in skeletal muscle function. The typical adult will lose muscle mass with age; the loss varies according to sex and the level of muscle activity. At the cellular level, muscles loose both cross-sectional area and fiber numbers, with type II muscle fibers being the most affected by aging. Some denervation of fibers may occur. The combination of these factors leads to an increased percentage of type I fibers in older adults. Metabolically, the glycolytic enzymes seem to be little affected by aging, but the aerobic enzymes appear to decline with age. Aged skeletal muscle produces less force and there is a general “slowing” of the mechanical characteristics of muscle. However, neither reduced muscle demand nor the subsequent loss of function is inevitable with aging. These losses can be minimized or even reversed with training. Endurance training can improve the aerobic capacity of muscle, and resistance training can improve central nervous system recruitment of muscle and increase muscle mass. Therefore, physical activity throughout life is encouraged to prevent much of the age-related impact on skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document