scholarly journals A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 762 ◽  
Author(s):  
Maria Maares ◽  
Hajo Haase

Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.

Author(s):  
Teresa D. Rebaza-Cardenas ◽  
Kenneth Silva-Cajaleón ◽  
Carlos Sabater ◽  
Susana Delgado ◽  
Nilda D. Montes-Villanueva ◽  
...  

AbstractIn this work, two Peruvian beverages “Masato de Yuca,” typical of the Amazonian communities made from cassava (Manihot esculenta), and “Chicha de Siete Semillas,” made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-322566
Author(s):  
Ane Olazagoitia-Garmendia ◽  
Linda Zhang ◽  
Paula Mera ◽  
Julie K Godbout ◽  
Maialen Sebastian-DelaCruz ◽  
...  

ObjectivesCoeliac disease (CD) is a complex autoimmune disorder that develops in genetically susceptible individuals. Dietary gluten triggers an immune response for which the only available treatment so far is a strict, lifelong gluten free diet. Human leucocyte antigen (HLA) genes and several non-HLA regions have been associated with the genetic susceptibility to CD, but their role in the pathogenesis of the disease is still essentially unknown, making it complicated to develop much needed non-dietary treatments. Here, we describe the functional involvement of a CD-associated single-nucleotide polymorphism (SNP) located in the 5’UTR of XPO1 in the inflammatory environment characteristic of the coeliac intestinal epithelium.DesignThe function of the CD-associated SNP was investigated using an intestinal cell line heterozygous for the SNP, N6-methyladenosine (m6A)-related knock-out and HLA-DQ2 mice, and human samples from patients with CD.ResultsIndividuals harbouring the risk allele had higher m6A methylation in the 5’UTR of XPO1 RNA, rendering greater XPO1 protein amounts that led to downstream nuclear factor kappa B (NFkB) activity and subsequent inflammation. Furthermore, gluten exposure increased overall m6A methylation in humans as well as in in vitro and in vivo models.ConclusionWe identify a novel m6A-XPO1-NFkB pathway that is activated in CD patients. The findings will prompt the development of new therapeutic approaches directed at m6A proteins and XPO1, a target under evaluation for the treatment of intestinal disorders.


Author(s):  
Giuseppa Visalli ◽  
Alessio Facciolà ◽  
Marianna Pruiti Ciarello ◽  
Giuseppe De Marco ◽  
Maria Maisano ◽  
...  

Due to ingestion of contaminated foods, the human gastrointestinal tract is the most likely site of exposure to microplastics (MPs) with gut barrier dysfunction and intestinal inflammation. Aimed to assess the effects induced by MPs with different granulometry (polystyrene (PS) 3 and 10 µm), we performed an in vitro study by using the human intestinal cell line HT29. As a novelty, we assessed the sub-chronic exposure extending the treatment up to 48 days simulating the in vivo situation. In the range of 100–1600 particles mL−1, both the PS suspensions had moderate cytotoxicity after 24 h with percentages of mortality between 6.7 and 21.6 for the 10 µm and 6.1 and 29.6 for the 3 µm PS. Microscopic observation highlighted a more pronounced lysosomal membrane permeabilization in HT29 exposed to PS 3µm. Reactive oxygen species production was higher in cells exposed to PS 10 µm, but sub-chronic exposure highlighted the ability of the cells to partially neutralize this effect. Comet-assay confirmed the temporary oxidative damage that was PS-induced. Overall, considering the very fast turnover of intestinal cells, the increase in cell mortality, equal to 25% and 11% for 3 and 10 µm PS-MPs for each time point, could trigger intestinal disorders due to prolonged exposure.


2007 ◽  
Vol 64 (11) ◽  
pp. 1605-1613 ◽  
Author(s):  
Soumya Niyogi ◽  
Gregory G Pyle ◽  
Chris M Wood

Zinc is an essential micronutrient for freshwater fish but can be toxic to them at elevated concentrations. Therefore, the regulation of zinc uptake is important in maintaining homeostasis when fish are chronically exposed to elevated zinc in nature. This study examined the kinetics of in vivo branchial and in vitro intestinal zinc uptake in wild yellow perch (Perca flavescens) from metal-contaminated and reference lakes in northern Ontario. The results showed that the branchial zinc uptake involves high-affinity transport sites, whereas the intestinal zinc uptake involves low-affinity transport sites. Interestingly, significant alterations in the branchial zinc uptake (reduced affinity, increased maximum transport rate) but no apparent changes in the intestinal zinc uptake characteristics were observed in the metal-impacted yellow perch population relative to the reference population. Subsequently, no differences in zinc concentrations of gill, liver, and whole body were recorded between reference and metal-impacted yellow perch populations. Overall, our study indicated that the gill, not the gut, likely plays a critical role in maintaining the zinc homeostasis in wild fish under chronic exposure.


2005 ◽  
Vol 73 (1) ◽  
pp. 44-48 ◽  
Author(s):  
David D Kitts ◽  
Soichiro Nakamura

Phosphopeptides derived from digests of milk casein possess bioactive properties with gastrointestinal, immunological, vasoregulatory and nutritional activities (Clare & Swaisgood, 2000; Kitts & Weiler, 2003). Products of tryptic digestion of casein, yielding caseinphosphopeptides (CPP), bind to divalent minerals such as iron and calcium by ionic interactions that involve phosphoseryl residues (Kitts & Yuan, 1992; Aìt-Oukhartar, 2000). Distribution of phosphoserine moieties varies with the individual native caseinates, and the extent of phosphorylation directly influences CPP mineral binding affinity (e.g. αs2>, αs1>β-caseins). The anionic pentapeptide (SerP-SerP-SerP-Glu-Glu) is the distinctive feature for the major fractions of casein phosphopeptides (CPP) characterized both in vitro and in vivo. Common CPP derived from tryptic digests of whole bovine casein in vitro include, β-casein-4P (1–25), αs1-casein-5P (59–79), αs2-casein-4P (1–21) and αs2-casein-4P (46–70) (Kitts & Kwong, 2004).


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Sign in / Sign up

Export Citation Format

Share Document