scholarly journals Gut-Muscle Axis Exists and May Affect Skeletal Muscle Adaptation to Training

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1451 ◽  
Author(s):  
Katarzyna Przewłócka ◽  
Marcin Folwarski ◽  
Karolina Kaźmierczak-Siedlecka ◽  
Karolina Skonieczna-Żydecka ◽  
Jan Jacek Kaczor

Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 80-81
Author(s):  
Tanja Hess ◽  
Emily Kent ◽  
Renan Regatieri Casagrande ◽  
Christine Levihn ◽  
Grace Romo ◽  
...  

Abstract Antioxidant supplementation has been shown to decrease post exercise oxidative stress but can lead to decreased post-exercise muscle protein synthesis. The objective of this study was to compare the effects of the supplementation with a control feed with low antioxidant content (CONT) to a high antioxidant feed (AO), versus a high antioxidant and branched chain amino acid feed (BCAO) on post-exercise protein synthesis and oxidative stress. Our hypothesis is that supplementing AO with BCAO will reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed breed conditioned polo horses were assigned to one of the three treatments. All horses consumed CONT for 30 days and were then submitted to a lactate threshold test (LT). One hour after this and all LT, each group was assigned and given their treatments. LT were done at 15 and 30 days of supplementation. Blood was collected before, two and four hours after LT, and analyzed for oxidative stress based on glutathione peroxidase, superoxide dismutase and malondialdehyde concentrations by ELISA. Muscle biopsies were taken before and 4 hours after LT and analyzed for the expression of protein synthesis by RT-PCR. Results were analyzed in a mixed model by ANOVA and compared by LSM. A reduction of oxidative stress was found over time (P < 0.050) with no treatment effect (P >0.50). An upregulation of protein synthesis after exercise was found for muscle primers CD36, CPT1, DK4, MyF5, and Myogenin (P < 0.050). There was a treatment by time effect for MyoD (P = 0.027), where AO was upregulated the most after exercise compared to BCAO and CONT. DK4 had a treatment by time effect trend (P = 0.073), where AO and BCAO were upregulated and CONT was unchanged after exercise. This study demonstrated post exercise muscle synthesis with no advantage of AO plus BCAO compared to AO.


2012 ◽  
Vol 303 (10) ◽  
pp. E1202-E1211 ◽  
Author(s):  
Guillaume Kraft ◽  
Katie C. Coate ◽  
Dominique Dardevet ◽  
Ben Farmer ◽  
E. Patrick Donahue ◽  
...  

Portal vein glucose delivery (the portal glucose signal) stimulates glucose uptake and glycogen storage by the liver, whereas portal amino acid (AA) delivery (the portal AA signal) induces an increase in protein synthesis by the liver. During a meal, both signals coexist and may interact. In this study, we compared the protein synthesis rates in the liver and muscle in response to portal or peripheral glucose infusion during intraportal infusion of a complete AA mixture. Dogs were surgically prepared with hepatic sampling catheters and flow probes. After a 42-h fast, they underwent a 3-h hyperinsulinemic (4× basal) hyperglucagonemic (3× basal) hyperglycemic (≈160 mg/dl) hyperaminoacidemic (hepatic load 1.5× basal; delivered intraportally) clamp (postprandial conditions). Glucose was infused either via a peripheral (PeG; n = 7) or the portal vein (PoG; n = 8). Protein synthesis was assessed with a primed, continuous [14C]leucine infusion. Net hepatic glucose uptake was stimulated by portal glucose infusion (+1 mg·kg−1·min−1, P < 0.05) as expected, but hepatic fractional AA extraction and hepatic protein synthesis did not differ between groups. There was a lower arterial AA concentration in the PoG group (−19%, P < 0.05) and a significant stimulation (+30%) of muscle protein synthesis associated with increased expression of LAT1 and ASCT2 AA transporters and p70S6 phosphorylation. Concomitant portal glucose and AA delivery enhances skeletal muscle protein synthesis compared with peripheral glucose and portal AA delivery. These data suggest that enteral nutrition support may have an advantage over parenteral nutrition in stimulating muscle protein synthesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Fan Wang ◽  
Xin Wang ◽  
Yiping Liu ◽  
Zhenghong Zhang

Oxidative stress is the imbalance of the redox system in the body, which produces excessive reactive oxygen species, leads to multiple cellular damages, and closely relates to some pathological conditions, such as insulin resistance and inflammation. Meanwhile, exercise as an external stimulus of oxidative stress causes the changes of pathophysiological functions in the tissues and organs, including skeletal muscle. Exercise-induced oxidative stress is considered to have different effects on the structure and function of skeletal muscle. Long-term regular or moderate exercise-induced oxidative stress is closely related to the formation of muscle adaptation, while excessive free radicals produced by strenuous or acute exercise can cause muscle oxidative stress fatigue and damage, which impacts exercise capacity and damages the body’s health. The present review systematically summarizes the relationship between exercise-induced oxidative stress and the adaptions, damage, and fatigue in skeletal muscle, in order to clarify the effects of exercise-induced oxidative stress on the pathophysiological functions of skeletal muscle.


2016 ◽  
pp. 1-10
Author(s):  
C.H. MURPHY ◽  
S.Y. OIKAWA ◽  
S.M. PHILLIPS

It is well accepted that daily protein intake is an important dietary consideration to limit and treat age-related declines in muscle mass, strength, and function. Furthermore, we propose that there is a growing appreciation for the need to consider protein intake on a per-meal basis rather than simply focusing on the total daily protein intake. The existence of a saturable dose-response relationship between muscle protein synthesis (MPS) and the quantity of protein consumed in a single meal/bolus provides the rationale for promoting an even/balanced pattern of daily protein intake. We hypothesize that a balanced/even protein intake pattern with the ingestion a quantity of protein shown to optimally stimulate MPS at each meal may be an effective strategy to alleviate sarcopenic muscle loss. In this review we examine the available evidence supporting the influence of dietary protein intake pattern on muscle protein turnover, muscle mass, and muscle function. We present several practical considerations that, it is proposed, should be taken into account when translating a per-meal protein recommendation into dietary advice for older adults.


2021 ◽  
Vol 19 (3) ◽  
pp. 58-68
Author(s):  
A.I. Khavkin ◽  
◽  
T.A. Kovtun ◽  
D.V. Makarkin ◽  
O.B. Fedotova ◽  
...  

One of the main strategies for preventing chronic diseases is a balanced diet from early childhood, with the inclusion of functional ingredients: dietary fiber, vitamins and vitamin-like compounds, minerals, polyunsaturated fatty acids, prebiotics and probiotics. A combined enrichment of fermented dairy products with prebiotics and probiotics contributes to the summation of their positive effective influence. Adding prebiotics and probiotics to the diet leads to the change in the intestinal microbiota composition towards a more balanced structure, thereby increasing the intestinal barrier function and the formation of optimal immune interactions. The most commonly used in human nutrition is a combination of bifidobacteria or lactobacilli with fructo-oligosaccharides in synbiotic products. It is important that the microorganisms are safe, stable in storage and able to survive in the gastrointestinal tract. The use of probiotic fermented dairy products has a positive impact on child health: it has anti-infectious and immunomodulatory effects, helps to normalize the gastrointestinal motility. These statements are confirmed by controlled studies in which children aged 8 to 18 months, recovering from acute respiratory disease, for which antibiotic therapy was prescribed, included in the diet drinking yoghurts enriched with Bifidobacterium lactis BB12 and inulin for 3 months. The inclusion of yoghurts in the children’s diet helped to normalize the intestinal microbiota composition after antibiotic therapy, as well as to strengthen the immune system by stimulating the synthesis of protective factors – secretory immunoglobulin A and lysozyme. Key words: fermented dairy products, child nutrition, probiotics, prebiotics, synbiotics, inulin, microbiota, functional foods, immune system, Bifidobacterium lactis BB12


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Caroline Marcantonio Ferreira ◽  
Angélica Thomaz Vieira ◽  
Marco Aurelio Ramirez Vinolo ◽  
Fernando A. Oliveira ◽  
Rui Curi ◽  
...  

The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1721 ◽  
Author(s):  
Gloria Solano-Aguilar ◽  
Saebyeol Jang ◽  
Sukla Lakshman ◽  
Richi Gupta ◽  
Ethiopia Beshah ◽  
...  

A study was designed to determine the potential prebiotic effect of dietary mushrooms on the host immune response, and intestinal microbiota composition and function. Thirty-one six-week-old pigs were fed a pig grower diet alone or supplemented with either three or six servings of freeze-dried white button (WB)-mushrooms for six weeks. Host immune response was evaluated in peripheral blood mononuclear cells (PBMC), and alveolar macrophages (AM) after stimulation with Salmonella typhymurium-Lipopolysaccharide (LPS). Isolated DNA from fecal and proximal colon contents were used for 16S rDNA taxonomic analysis and linear discriminant analysis effect size (LEfSe) to determine bacterial abundance and metabolic function. Pigs gained weight with no difference in body composition or intestinal permeability. Feeding mushrooms reduced LPS-induced IL-1β gene expression in AM (P < 0.05) with no change in LPS-stimulated PBMC or the intestinal mucosa transcriptome. LEfSe indicated increases in Lachnospiraceae, Ruminococcaceae within the order Clostridiales with a shift in bacterial carbohydrate metabolism and biosynthesis of secondary metabolites in the mushroom-fed pigs. These results suggested that feeding WB mushrooms significantly reduced the LPS-induced inflammatory response in AM and positively modulated the host microbiota metabolism by increasing the abundance of Clostridiales taxa that are associated with improved intestinal health.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 24 ◽  
Author(s):  
Frederic Capel ◽  
Alexandre Pinel ◽  
Stéphane Walrand

Aging is characterized by a loss in muscle mass and function, which is defined as sarcopenia. It weakens individuals by increasing the risk of falls and altering their quality of life. The loss of muscle mass results from the age-related impairment of the anabolic effect of nutrients and insulin, which normally increase and decrease muscle protein synthesis and degradation rates respectively. Alterations in muscle protein metabolism have been related to the accumulation of body fat and intramyocellular lipids. In particular, some lipid species such as ceramides or diacylglycerols have been described as inhibitors of the insulin signaling pathway in different models. Accumulation of these molecules in skeletal muscle could result from a lowered buffering capacity of circulating fatty acids by adipose tissue in response to the meal, a reduction of mitochondrial oxidative capacities or chronic inflammation. However, some nutritional strategies have been identified to limit or prevent the accumulation of lipotoxic metabolites and to improve the sensitivity of muscle to nutrients or insulin.


Sign in / Sign up

Export Citation Format

Share Document