scholarly journals Synbiotic Effect of Bifidobacterium lactis CNCM I-3446 and Bovine Milk-Derived Oligosaccharides on Infant Gut Microbiota

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2268 ◽  
Author(s):  
Benoît Marsaux ◽  
Pieter Van den Abbeele ◽  
Jonas Ghyselinck ◽  
Guénolée Prioult ◽  
Massimo Marzorati ◽  
...  

Background: This study evaluated the impact of Bifidobacterium animalis ssp. lactis CNCM I-3446, Bovine Milk-derived OligoSaccharides (BMOS) and their combination on infant gut microbiota in vitro. In addition, a novel strategy consisting of preculturing B. lactis with BMOS to further enhance their potential synbiotic effects was assessed. Method: Short-term fecal batch fermentations (48 h) were used to assess the microbial composition and activity modulated by BMOS alone, B. lactis grown on BMOS or dextrose alone, or their combinations on different three-month-old infant microbiota. Results: BMOS alone significantly induced acetate and lactate production (leading to pH decrease) and stimulated bifidobacterial growth in 10 donors. A further in-depth study on two different donors proved B. lactis ability to colonize the infant microbiota, regardless of the competitiveness of the environment. BMOS further enhanced this engraftment, suggesting a strong synbiotic effect. This was also observed at the microbiota activity level, especially in a donor containing low initial levels of bifidobacteria. In this donor, preculturing B. lactis with BMOS strengthened further the early modulation of microbiota activity observed after 6 h. Conclusion: This study demonstrated the strong synbiotic effect of BMOS and B. lactis on the infant gut microbiota, and suggests a strategy to improve its effectiveness in an otherwise low-Bifidobacterium microbiota.

2021 ◽  
Author(s):  
Lisa Miclotte ◽  
Ellen De Paepe ◽  
Qiqiong Li ◽  
Andreja Rajkovic ◽  
John Van Camp ◽  
...  

In the context of the potential health hazards related to food processing, dietary emulsifiers have been shown to alter the structure and function of the gut microbial community, both in vivo and in vitro. In mouse models, these emulsifier exposed gut microbiota were shown to contribute to gut inflammation. Several knowledge gaps remain to be addressed though. As such, the impact from a longer timeframe of exposure on the gut microbiota is not known and interindividual variability in microbiome response needs to be measured. To answer these research questions, in this study the faecal microbiota from two individuals, previously selected for high and low emulsifier sensitivity, were exposed to two concentrations of soy lecithin during a 7 day treatment phase in the dynamic mucosal simulator of the human intestinal microbial ecosystem (M-SHIME). The results showed mild effects from soy lecithin on the composition and functionality of these microbial communities, which depended on the original microbial composition. The effects also mostly levelled off after 3 days of exposure. The emulsifier sensitivity for which the microbiota were selected, was preserved. Some potentially concerning effects were also registered: butyrate levels, positively correlating with Faecalibacterium abundance, were lowered by soy lecithin. Also the abundance of the beneficial Bifidobacterium genus was lowered, while the abundance of the notorious unclassified Enterobacteriaceae was increased. Within the family of the unclassified Lachnospiraceae, several genera were either suppressed or stimulated. The effects that these microbial alterations would have on a living host is not yet certain, especially given the fact that large fractions of soy lecithins constituents can be absorbed. Nevertheless, choline and phosphatidylcholine, both primary and absorbable constituents of soy lecithin, have recently been linked to cardiovascular disease via the generation of TMA by the gut microbiota. Further studies that validate our findings and link them to potential health outcomes are thus justified.


Microbiology ◽  
2010 ◽  
Vol 156 (11) ◽  
pp. 3224-3231 ◽  
Author(s):  
R. A. Kemperman ◽  
S. Bolca ◽  
L. C. Roger ◽  
E. E. Vaughan

Polyphenols, ubiquitously present in the food we consume, may modify the gut microbial composition and/or activity, and moreover, may be converted by the colonic microbiota to bioactive compounds that influence host health. The polyphenol content of fruit and vegetables and derived products is implicated in some of the health benefits bestowed on eating fruit and vegetables. Elucidating the mechanisms behind polyphenol metabolism is an important step in understanding their health effects. Yet, this is no trivial assignment due to the diversity encountered in both polyphenols and the gut microbial composition, which is further confounded by the interactions with the host. Only a limited number of studies have investigated the impact of dietary polyphenols on the complex human gut microbiota and these were mainly focused on single polyphenol molecules and selected bacterial populations. Our knowledge of gut microbial genes and pathways for polyphenol bioconversion and interactions is poor. Application of specific in vitro or in vivo models mimicking the human gut environment is required to analyse these diverse interactions. A particular benefit can now be gained from next-generation analytical tools such as metagenomics and metatranscriptomics allowing a wider, more holistic approach to the analysis of polyphenol metabolism. Understanding the polyphenol–gut microbiota interactions and gut microbial bioconversion capacity will facilitate studies on bioavailability of polyphenols in the host, provide more insight into the health effects of polyphenols and potentially open avenues for modulation of polyphenol bioactivity for host health.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2021 ◽  
Vol 9 (2) ◽  
pp. 278
Author(s):  
Shen Jean Lim ◽  
Miriam Aguilar-Lopez ◽  
Christine Wetzel ◽  
Samia V. O. Dutra ◽  
Vanessa Bray ◽  
...  

The preterm infant gut microbiota is influenced by environmental, endogenous, maternal, and genetic factors. Although siblings share similar gut microbial composition, it is not known how genetic relatedness affects alpha diversity and specific taxa abundances in preterm infants. We analyzed the 16S rRNA gene content of stool samples, ≤ and >3 weeks postnatal age, and clinical data from preterm multiplets and singletons at two Neonatal Intensive Care Units (NICUs), Tampa General Hospital (TGH; FL, USA) and Carle Hospital (IL, USA). Weeks on bovine milk-based fortifier (BMF) and weight gain velocity were significant predictors of alpha diversity. Alpha diversity between siblings were significantly correlated, particularly at ≤3 weeks postnatal age and in the TGH NICU, after controlling for clinical factors. Siblings shared higher gut microbial composition similarity compared to unrelated individuals. After residualizing against clinical covariates, 30 common operational taxonomic units were correlated between siblings across time points. These belonged to the bacterial classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and Negativicutes. Besides the influence of BMF and weight variables on the gut microbial diversity, our study identified gut microbial similarities between siblings that suggest genetic or shared maternal and environmental effects on the preterm infant gut microbiota.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


Author(s):  
Leonardo Mancabelli ◽  
Walter Mancino ◽  
Gabriele Andrea Lugli ◽  
Chiara Argentini ◽  
Giulia Longhi ◽  
...  

Amoxicillin-Clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding six months. Moreover, we evaluated AMC sensitivity by Minimal Inhibitory Concentration (MIC) test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains, which exhibit a high level of AMC insensitivity, and which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch-cultures. Importance Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, also affecting the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genome revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in-vitro experiments revealed that one strain, i.e. B. breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3819
Author(s):  
Carlos Poveda ◽  
Dora I. A. Pereira ◽  
Marie C. Lewis ◽  
Gemma E. Walton

Ferrous iron supplementation has been reported to adversely alter the gut microbiota in infants. To date, the impact of iron on the adult microbiota is limited, particularly at low supplementary concentrations. The aim of this research was to explore the impact of low-level iron supplementation on the gut microbiota of healthy and Irritable Bowel Syndrome (IBS) volunteers. Anaerobic, pH-controlled in vitro batch cultures were inoculated with faeces from healthy or IBS donors along with iron (ferrous sulphate, nanoparticulate iron and pea ferritin (50 μmol−1 iron)). The microbiota were explored by fluorescence in situ hybridisation coupled with flow cytometry. Furthermore, metabolite production was assessed by gas chromatography. IBS volunteers had different starting microbial profiles to healthy controls. The sources of iron did not negatively impact the microbial population, with results of pea ferritin supplementation being similar to nanoparticulate iron, whilst ferrous sulphate led to enhanced Bacteroides spp. The metabolite data suggested no shift to potentially negative proteolysis. The results indicate that low doses of iron from the three sources were not detrimental to the gut microbiota. This is the first time that pea ferritin fermentation has been tested and indicates that low dose supplementation of iron is unlikely to be detrimental to the gut microbiota.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1560-1560
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett Savary ◽  
...  

Abstract Objectives Arabinoxylan is a non-starch polysaccharide and rich in wheat, rice and many other cereal grains. Diets high in fiber help promoting gut health in obesity. The objective of this study was to investigate the impact of arabinoxylan from rice bran on the gut microbiota and short chain fatty acids (SCFA) in normal weight (NW) and overweight/obese (OO) subjects through in vitro fecal fermentation. Methods Arabinoxylan was extracted from rice bran fiber. For in vitro fecal fermentation, each fecal sample from NW (n = 6, 3 males and 3 females) and OO (n = 7, 3 males and 4 females) was diluted into anaerobic medium with three treatments: control (no substrates), fructooligosaccharides (FOS, a well-known prebiotic), and arabinoxylan. Samples were incubated at 37˚C and aliquots were taken at 0, 4, 8, 12 and 24 h. SCFA content from samples at all timepoints was analyzed using HPLC. Samples at 0 and 24 h were used for gut microbiota analysis through 16S rRNA gene sequencing. Statistical analyses were performed for the randomized complete block design, where the weight classes are confounded with blocks (subjects). Friedman test was used to determine the difference at 5% level of significance. Results As a result, arabinoxylan treatment significantly increased total SCFA concentration in both NW and OO subjects than control (P &lt; 0.05), comparable to FOS treatment. Between weight classes under arabinoxylan treatment, OO group showed a significantly higher total SCFA content than NW group (P &lt; 0.05). Arabinoxylan changed gut microbial population at the genus level, stimulating Bifidobacterium, Collinsella and Blautia and decreasing Clostridium XIVa and b, Dorea and Oscillibacter (P &lt; 0.05). In addition, different microbiome population was shown in weight classes with three treatments, showing higher Bacteroides in NW and higher Prevotella in OO. Conclusions These results showed that arabinoxylan from rice bran modified gut microbiota in both weight classes, increasing total SCFA content. This study suggests that arabinoxylan from rice bran may have a potential impact on microbial gut health in obesity with prebiotic activities. Funding Sources University of Arkansas.


Sign in / Sign up

Export Citation Format

Share Document