scholarly journals Inhibitory Effects of a Sargassum miyabei Yendo on Cutibacterium acnes-Induced Skin Inflammation

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2620
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Hyun-Soo Kim ◽  
Grace Choi ◽  
Young-Mog Kim ◽  
...  

Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.

2021 ◽  
Vol 9 (7) ◽  
pp. 1486
Author(s):  
Marcela Espinoza-Monje ◽  
Jorge Campos ◽  
Eduardo Alvarez Villamil ◽  
Alonso Jerez ◽  
Stefania Dentice Maidana ◽  
...  

Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.


Author(s):  
Vicky Bronnec ◽  
Hinnerk Eilers ◽  
Anika C. Jahns ◽  
Hélène Omer ◽  
Oleg A. Alexeyev

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiyue Zhang ◽  
Li Du ◽  
Jinrong Zhang ◽  
Chunyan Li ◽  
Jie Zhang ◽  
...  

Acute lung injury (ALI) is a respiratory disease that leads to death in severe cases. Hordenine (Hor), a barley-derived natural product, has various biological activities, including anti-inflammatory, and anti-oxidation activities. We investigated the effect of Hor on lipopolysaccharide-induced ALI and its potential mechanism. The anti-inflammatory effects of Hor were detected using in vivo and in vitro models by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blotting, and molecular docking simulations. Hor inhibited increases in the levels of inflammatory factors both in vivo and in vitro, and its anti-inflammatory effect inhibited activation of protein kinase B, nuclear factor-κB, and mitogen-activated protein kinase signaling. Hor alleviated lipopolysaccharide-induced ALI by inhibiting inflammatory cytokine increases in vivo and in vitro and shows potential for preventing inflammatory disease.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 573 ◽  
Author(s):  
Hye Yang ◽  
Hyunkyoung Lee ◽  
Jong-Hyun Kim ◽  
Il-Hwa Hong ◽  
Du Hwang ◽  
...  

Rumex japonicus Houtt. (RJ) is traditionally used in folk medicines to treat patients suffering from skin disease in Korea and other parts of East Asia. However, the beneficial effect of RJ extract on atopic dermatitis (AD) has not been thoroughly examined. Therefore, this study aimed to investigate the anti-inflammatory effects of RJ on AD in vitro and in vivo. Treatment with RJ inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) as well as the activation of nuclear factor-kappa B (NF-κB) in tumor necrosis factor-α (TNF-α) stimulated in HaCaT cells. The five-week-old Balb/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of RJ to DNCB-treated mice significantly reduced clinical dermatitis severity, epidermal thickness, and decreased mast cell and eosinophil infiltration into skin and ear tissue. These results suggest that RJ inhibits the development of AD-like skin lesions by regulating the skin inflammation responses in HaCaT cells and Balb/c mice. Thus, RJ may be a potential therapeutic agent for AD.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4277
Author(s):  
Lu-Te Chuang ◽  
Ya-Hsin Shih ◽  
Wen-Cheng Huang ◽  
Lie-Chwen Lin ◽  
Chin Hsu ◽  
...  

Cutibacterium acnes (formerly Propionibacterium acnes) is a key pathogen involved in the development and progression of acne inflammation. The numerous bioactive properties of wild bitter melon (WBM) leaf extract and their medicinal applications have been recognized for many years. In this study, we examined the suppressive effect of a methanolic extract (ME) of WBM leaf and fractionated components thereof on live C. acnes-induced in vitro and in vivo inflammation. Following methanol extraction of WBM leaves, we confirmed anti-inflammatory properties of ME in C. acnes-treated human THP-1 monocyte and mouse ear edema models. Using a bioassay-monitored isolation approach and a combination of liquid–liquid extraction and column chromatography, the ME was then separated into n-hexane, ethyl acetate, n-butanol and water-soluble fractions. The hexane fraction exerted the most potent anti-inflammatory effect, suppressing C. acnes-induced interleukin-8 (IL-8) production by 36%. The ethanol-soluble fraction (ESF), which was separated from the n-hexane fraction, significantly inhibited C. acnes-induced activation of mitogen-activated protein kinase (MAPK)-mediated cellular IL-8 production. Similarly, the ESF protected against C. acnes-stimulated mouse ear swelling, as measured by ear thickness (20%) and biopsy weight (23%). Twenty-four compounds in the ESF were identified using gas chromatograph–mass spectrum (GC/MS) analysis. Using co-cultures of C. acnes and THP-1 cells, β-ionone, a compound of the ESF, reduced the production of IL-1β and IL-8 up to 40% and 18%, respectively. β-ionone also reduced epidermal microabscess, neutrophilic infiltration and IL-1β expression in mouse ear. We also found evidence of the presence of anti-inflammatory substances in an unfractionated phenolic extract of WBM leaf, and demonstrated that the ESF is a potential anti-inflammatory agent for modulating in vitro and in vivo C. acnes-induced inflammatory responses.


Author(s):  
Leandra de Almeida Ribeiro Oliveira ◽  
Arthur Christian Garcia da Silva ◽  
Douglas Vieira Thomaz ◽  
Fabiana Brandão ◽  
Edemilson Cardoso da Conceição ◽  
...  

Purpose: The emergence of the COVID-19 pandemic has led to the search for potential therapeutic responses for various aspects of this disease. Fruits of Pterodon emarginatus Vogel (Fabaceae), sucupira, have been used in Brazilian traditional medicine because of their anti-inflammatory properties, which have been proven in vivo, in vitro, and in silico. Therefore, the aim of this work is to evaluate P. emarginatus oleoresin and isolated diterpenes by in vitro anti-inflammatory models. Methods: In this study, the mechanisms underlying the anti-inflammatory activity of Pterodon emarginatus oleoresin and vouacapanes 6α,19β-diacetoxy-7β,14β-dihydroxyvouacapan (V1), 6α-acetoxy-7β,14β-dihydroxyvouacapan (V2), and methyl 6α-acetoxy-7β-hydroxyvouacapan-17β-oate (V3) were investigated in HaCaT cells. Results: Oleoresin, V2, and V3 inhibited phospholipase A2 (30.78%, 24.96%, and 77.64%, respectively). Both vouacapanes also inhibited the expression of COX-2 (28.3% and 33.17%, respectively). The production of interleukin IL-6 was inhibited by oleoresin by 35.47%. However, oleoresin did not interfere with Nrf-2 expression or IL-8 production. Conclusion: The results support the ethnomedicinal use of P. emarginatus oleoresin as an anti-inflammatory herbal medicine, and also highlight Pterodon emarginatus oleoresin and isolated vouacapanes as an attractive therapeutic approach for COVID-19 through the reduction or chronological control of the inflammatory mediators IL-6, COX-2, phospholipase A2, and INF-y (indirectly) during the SARS-CoV-2 infection process.


2018 ◽  
Vol 7 (3) ◽  
pp. 213-222 ◽  
Author(s):  
X. Tang ◽  
S. Teng ◽  
M. Petri ◽  
C. Krettek ◽  
C. Liu ◽  
...  

Objectives The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo. Methods Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents. Results Dexamethasone maintained the viability and promoted the proliferation of AFib. Diclofenac decreased the viability and inhibited the cell proliferation during the first week of cultivation. However, decorin inhibited AFib proliferation and downregulated the expressions of fibrotic markers. Additionally, decorin could improve the flexion contracture angle and inhibit the deposition of interstitial matrix components in the rabbit joint model. Conclusion Decorin decreased the expression of myofibroblast markers in AFib, inhibited the proliferation of AFib, and prevented the initial procedure of arthrofibrosis in vivo, suggesting that decorin could be a promising treatment to inhibit the development of arthrofibrosis. Cite this article: X. Tang, S. Teng, M. Petri, C. Krettek, C. Liu, M. Jagodzinski. The effect of anti-inflammatory and antifibrotic agents on fibroblasts obtained from arthrofibrotic tissue: An in vitro and in vivo study. Bone Joint Res 2018;7:213–222. DOI: 10.1302/2046-3758.73.BJR-2017-0219.R2.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1418
Author(s):  
Jeongyoon Choi ◽  
Sunghee Moon ◽  
Hyemi Bae ◽  
Young-Won Kim ◽  
Yelim Seo ◽  
...  

Alnus sibirica extracts (ASex) have long been used in Oriental medicine to treat various conditions. To provide a scientific basis for this application and the underlying mechanism, we investigated the anti-inflammatory effects of ASex in vitro and in vivo. The in vitro model was established using human dermal fibroblasts (HDFs) treated with inflammatory stimulants (lipopolysaccharide, tumor necrosis factor-alpha, interferon-gamma). Lactate dehydrogenase and reverse transcription-polymerase chain reaction showed that ASex inhibited the increased expression of acute-phase inflammatory cytokines. The in vivo model was established by inducing skin inflammation in NC/Nga mice via the repeated application of house dust mite (HDM) ointment to the ears and back of the mice for eight weeks. HDM application increased the severity of skin lesions, eosinophil/mast cell infiltration, and serum immunoglobulin E levels, which were all significantly decreased by ASex treatment, demonstrating the same degree of protection as hydrocortisone. Overall, ASex showed excellent anti-inflammatory effects both in vitro and in vivo, suggesting its potential as an excellent candidate drug to reduce skin inflammation.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5230
Author(s):  
Evelyn Saba ◽  
Yuan Yee Lee ◽  
Man Hee Rhee ◽  
Sung-Dae Kim

Ginseng is a vastly used herbal supplement in Southeast Asian countries. Red ginseng extract enriched with Rg3 (Rg3-RGE) is a formula that has been extensively studied owing to its various biological properties. Persicaria tinctoria (PT), belonging to the Polygonaceae family, has also been reported for its anti-inflammatory properties. Ulcerative colitis (UC) is inflammation of the large intestine, particularly in the colon. This disease is increasingly common and has high probability of relapse. We investigated, separately and in combination, the effects of Rg3-RGE and PT using murine exemplary of UC induced by DSS (Dextran Sulfate Sodium). For in vitro and in vivo experiments, nitric oxide assay, qRT-Polymerase Chain Reaction (PCR), Western blot, ulcerative colitis introduced by DSS, Enzyme Linked Immunosorbent Assay (ELISA), and flow cytometry analysis were performed. The results obtained demonstrate that treatment with Rg3-RGE + PT showed synergism to suppress inflammation (in vitro) in RAW 264.7 cells via mitogen-activated protein kinase and nuclear factor κB pathways. Moreover, in C57BL/6 mice, this mixture exhibits strong anti-inflammatory effects in restoring colon length, histopathological damage, pro-inflammatory mediators, and cytokines amount, and decreasing levels of NLRP3 inflammasome (in vivo). Our results recommend that this mixture can be used for the prevention of UC as a prophylactic/therapeutic supplement.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5219
Author(s):  
Carlota Salgado ◽  
Hugo Morin ◽  
Nayara Coriolano de Aquino ◽  
Laurence Neff ◽  
Cláudia Quintino da Rocha ◽  
...  

Arrabidaea brachypoda is a plant commonly used for the treatment of kidney stones, arthritis and pain in traditional Brazilian medicine. Different in vitro and in vivo activities, ranging from antinociceptive to anti-Trypanosoma cruzi, have been reported for the dichloromethane root extract of Arrabidaea brachypoda (DCMAB) and isolated compounds. This work aimed to assess the in vitro anti-inflammatory activity in arthritic synoviocytes of the DCMAB, the hydroethanolic extract (HEAB) and three dimeric flavonoids isolated from the DCMAB. These compounds, brachydin A (1), B (2) and C (3), were isolated both by medium pressure liquid and high-speed counter current chromatography. Their quantification was performed by mass spectrometry on both DCMAB and HEAB. IL-1β activated human fibroblast-like synoviocytes were incubated with both extracts and isolated compounds to determine the levels of pro-inflammatory cytokine IL-6 by enzyme-linked immunosorbent assay (ELISA). DCMAB inhibited 30% of IL-6 release at 25 µg/mL, when compared with controls while HEAB was inactive. IC50 values determined for 2 and 3 were 3-fold higher than 1. The DCMAB activity seems to be linked to higher proportions of compounds 2 and 3 in this extract. These observations could thus explain the traditional use of A. brachypoda roots in the treatment of osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document