scholarly journals Effect of Increasing the Dietary Protein Content of Breakfast on Subjective Appetite, Short-Term Food Intake and Diet-Induced Thermogenesis in Children

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3025
Author(s):  
Nick Bellissimo ◽  
Tammy Fansabedian ◽  
Vincent C.H. Wong ◽  
Julia O. Totosy de Zepetnek ◽  
Neil R. Brett ◽  
...  

Dietary protein affects energy balance by decreasing food intake (FI) and increasing energy expenditure through diet-induced thermogenesis (DIT) in adults. Our objective was to investigate the effects of increasing the dietary protein in an isocaloric breakfast on subjective appetite, FI, blood glucose, and DIT in 9–14 y children. Two randomized repeated measures designs were used. In experiment 1, 17 children (9 boys, 8 girls) consumed isocaloric meals (450 kcal) on four separate mornings containing: 7 g (control), 15 g (low protein, LP), 30 g (medium protein, MP) or 45 g (high protein, HP) of protein. Blood glucose and subjective appetite were measured at baseline and regular intervals for 4 h, and FI was measured at 4 h. In experiment 2, 9 children (6 boys, 3 girls) consumed the control or HP breakfast on two separate mornings, and both DIT and subjective appetite were determined over 5 h. In experiment 1, all dietary protein treatments suppressed subjective appetite compared to control (p < 0.001), and the HP breakfast suppressed FI compared with the LP breakfast and control (p < 0.05). In experiment 2, DIT was higher after HP than control (p < 0.05). In conclusion, increasing the dietary protein content of breakfast had favorable effects on satiety, FI, and DIT in children.

2014 ◽  
Vol 39 (12) ◽  
pp. 1360-1365 ◽  
Author(s):  
Rebecca C. Mollard ◽  
Bohdan L. Luhovyy ◽  
Christopher Smith ◽  
G. Harvey Anderson

Whether pulse components can be used as value-added ingredients in foods formulated for blood glucose (BG) and food intake (FI) control requires investigation. The objective of this study was to examine of the effects of pea components on FI at an ad libitum meal, as well as appetite and BG responses before and after the meal. In a repeated-measures crossover trial, men (n = 15) randomly consumed (i) pea hull fibre (7 g), (ii) pea protein (10 g), (iii) pea protein (10 g) plus hull fibre (7 g), (iv) yellow peas (406 g), and (v) control. Pea hull fibre and protein were served with tomato sauce and noodles, while yellow peas were served with tomato sauce. Control was noodles and tomato sauce. FI was measured at a pizza meal (135 min). Appetite and BG were measured pre-pizza (0–135 min) and post-pizza (155–215 min). Protein plus fibre and yellow peas led to lower pre-pizza BG area under the curve compared with fibre and control. At 30 min, BG was lower after protein plus fibre and yellow peas compared with fibre and control, whereas at 45 and 75 min, protein plus fibre and yellow peas led to lower BG compared with fibre (p < 0.05). Following the pizza meal (155 min), yellow peas led to lower BG compared with fibre (p < 0.05). No differences were observed in FI or appetite. This trial supports the use of pea components as value-added ingredients in foods designed to improve glycemic control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


2000 ◽  
Vol 80 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Palle V. Rasmussen ◽  
Christian F. Børsting

The effect of different and shifting dietary protein levels on hair growth and the resulting pelt quality in mink was studied. Two groups of pastel female mink were fed either 59% (high protein, HP) or 40% (low protein, LP) of metabolisable energy (ME) from protein during pregnancy and lactation. Shortly after weaning, kits from females fed the LP diet were put on a new LP diet (21% protein of ME). Kits from females fed HP were randomly distributed to four experimental groups fed a new HP diet (34% protein of ME) and three of these groups were shifted to diets with 21% protein at different times during June until September. Skin biopsies were taken at 4, 6, 23 and, 29 wk of age. Histological techniques and computer-assisted light microscopy were used to determine the ratio of activity (ROA) of underfur and guard hairs, respectively, defined as the number of growing hairs as a percentage of the total number of hairs. The hair fibre length and thickness were determined by morphometric methods and correlated with fur properties of dried pelts judged by sensory methods. It was documented that 40% of ME from protein during pregnancy and lactation was sufficient for mink kits to express their genetic capacity to produce hair follicles. In males, a reduced protein level from the age of 15 wk or 22 wk until pelting disturbed moulting, indicated by a low ROA of underfur hairs at 23 wk, and consequently reduced the growth and development of the winter coat. A constantly low protein level from conception until the age of 29 wk did not disturb moulting, but led to a reduction of primeness and especially of the underfur length and fibre thickness of the winter coat. A low protein level from the age of 9 wk only reduced the thickness of the underfur fibres. Hair growth, final fur volume, and general quality of the winter coat of males were influenced negatively and to the same degree in all groups fed the LP diet in part of the growth period. The number of underfur hairs per area (hair density) of the winter coat was not influenced by the dietary treatment meaning that the protein content of 21% of ME in the LP diet was high enough for the mink to express its genetic capacity to develop hair follicles. However, this low protein content led to a reduction of hair fibre length and hair fibre thickness of the underfur. Overall, this study demonstrated that hair growth and hair properties in pelts are very dependent on the dietary protein supply in the period from 22 wk of age until pelting, irrespective of the supply in the preceding periods. Key words: Fur properties, hair fibres, nutrition, pelage, protein requirement


2021 ◽  
Vol 25 (1) ◽  
pp. 22-26
Author(s):  
Raksha Amemane ◽  
Archana Gundmi ◽  
Kishan Madikeri Mohan

Background and Objectives: Music listening has a concomitant effect on structural and functional organization of the brain. It helps in relaxation, mind training and neural strengthening. In relation to it, the present study was aimed to find the effect of Carnatic music listening training (MLT) on speech in noise performance in adults.Subjects and Methods: A total of 28 participants (40-70 years) were recruited in the study. Based on randomized control trial, they were divided into intervention and control group. Intervention group underwent a short-term MLT. Quick Speech-in-Noise in Kannada was used as an outcome measure.Results: Results were analysed using mixed method analysis of variance (ANOVA) and repeated measures ANOVA. There was a significant difference between intervention and control group post MLT. The results of the second continuum revealed no statistically significant difference between post training and follow-up scores in both the groups.Conclusions: In conclusion short-term MLT resulted in betterment of speech in noise performance. MLT can be hence used as a viable tool in formal auditory training for better prognosis.


Author(s):  
F. Shariatmadari ◽  
J.M. Forbes

The ability of broiler chickens to regulate protein intake when given a choice of high- and low-protein feeds has been demonstrated (Shariatmadari and Forbes, 1990). However, it is not know whether birds take several meals from one feed and then several from the other, or whether both feeds are taken in mixed meals. Therefore, to determine how protein intake regulation operates on a meal-to-meal basis, the meal patterns of broiler chickens were automatically recorded when they were offered two feeds of different protein content.


1975 ◽  
Vol 228 (4) ◽  
pp. 1284-1287 ◽  
Author(s):  
PM Leung ◽  
BA Horwitz

Infusion of bacterial pyrogen (Priomen) was accompanied by an increase in body temperature, an increase in heat production, and a decrease in the voluntary food intake ofrats fed high-as well as low-protein diets. The magnitude of this pyrogen-induced depression of food intake was comparable for both diets. However, in rats fed high-protein diets, this decrease was additive to that normally seen following administration of such diets. These data indicate that the control of food intake cannot be explained in terms of a behavioral the more regulatory response.


2021 ◽  
Vol 6 ◽  
pp. 218
Author(s):  
Patricia Serpente ◽  
Ying Zhang ◽  
Eva Islimye ◽  
Sarah Hart-Johnson ◽  
Alex P. Gould

Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results:  Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.


2021 ◽  
Author(s):  
Krystle Kalafut ◽  
Sarah J Mitchell ◽  
Michael R MacArthur ◽  
James R Mitchell

There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and extends lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. 20% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD diets both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF and KD differed with respect to insulin tolerance and hepatic insulin sensitivity, which were increased in PF-fed mice and impaired in KD-fed mice relative to controls. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing at least 5% protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD diets and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets occur via distinct underlying mechanisms.


Author(s):  
I Rigby ◽  
N Lodge

There is an increasing demand for heavy lean carcases and, at the same time, an increasing proportion of barley beef animals being finished as bulls. Bulls have a high potential for muscle growth and, therefore, have a high demand for dietary protein. In addition, since the banning of hormone implantation of beef animals, there has been increasing interest in the use of feed additives.This trial was designed to measure the response of Holstein/Friesian bulls to increasing protein content in barley beef rations, and to measure the benefits of including lasalocid sodium (a feed additive). Responses were measured in terms of improved liveweight gains and feed conversioin efficiencies but also of interest was the effect of treatments on the weights at which animals reached a given fat class at slaughter.


Sign in / Sign up

Export Citation Format

Share Document