scholarly journals Extreme Birth Weight and Metabolic Syndrome in Children

Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 204
Author(s):  
Teofana Otilia Bizerea-Moga ◽  
Laura Pitulice ◽  
Cristina Loredana Pantea ◽  
Orsolya Olah ◽  
Otilia Marginean ◽  
...  

Small and large birth weights (BWs) for gestational age (GA) represent extremes, but the correlation between extreme BW and metabolic syndrome (MetS) has not been fully elucidated. In this study, we examined this correlation in obese children based on changes in their metabolic profile from childhood to adolescence. A retrospective observational study was performed on 535 obese patients aged 0–18 years in the Clinical and Emergency Hospital for Children “Louis Turcanu” in Timisoara, Romania, based on clinical and biological data from January 2015 to December 2019. We emphasized the links between extreme BW and obesity, extreme BW and cardiometabolic risk, obesity and cardiometabolic risk, and extreme BW, obesity and MetS. Children born large for gestational age (LGA) predominated over those born small for gestational age (SGA). Our findings showed that BW has an independent effect on triglycerides and insulin resistance, whereas obesity had a direct influence on hypertension, impaired glucose metabolism and hypertriglyceridemia. The influences of BW and obesity on the development of MetS and its components are difficult to separate; therefore, large prospective studies in normal-weight patients are needed.

2007 ◽  
Vol 74 (6) ◽  
pp. 561-565 ◽  
Author(s):  
Xiumin Wang ◽  
Li Liang ◽  
F. U. Junfen ◽  
D. U. Lizhong

2018 ◽  
Vol 104 (5) ◽  
pp. 1766-1776 ◽  
Author(s):  
Freja Bach Kampmann ◽  
Anne Cathrine Baun Thuesen ◽  
Line Hjort ◽  
Sjurdur Frodi Olsen ◽  
Sara Monteiro Pires ◽  
...  

Abstract Context and Objective Being born small or large for gestational age and intrauterine exposure to gestational diabetes (GDM) increase the risk of type 2 diabetes in the offspring. However, the potential combined deleterious effects of size at birth and GDM exposure remains unknown. We examined the independent effect of size at birth and the influence of GDM exposure in utero on cardiometabolic traits, body composition, and puberty status in children. Design, Participants, and Methods The present study was a longitudinal birth cohort study. We used clinical data from 490 offspring of mothers with GDM and 527 control offspring aged 9 to 16 years, born singleton at term from the Danish National Birth Cohort with available birthweight data. Results We found no evidence of a U-shaped association between size at birth (expressed as birthweight, sex, and gestational age adjusted z-score) and cardiometabolic traits. Body size in childhood and adolescence reflected the size at birth but was not reflected in any metabolic outcome. No synergistic adverse effect of being born small or large for gestational age and exposure to GDM was shown. However, GDM was associated with an adverse metabolic profile and earlier onset of female puberty in childhood and adolescence independently of size at birth. Conclusion In childhood and adolescence, we found GDM was a stronger predictor of dysmetabolic traits than size at birth. The combination of being born small or large and exposed to GDM does not exacerbate the metabolic profile in the offspring.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuan Hua Chen ◽  
Li Li ◽  
Wei Chen ◽  
Zhi Bing Liu ◽  
Li Ma ◽  
...  

Abstract The association between suboptimal pre-pregnancy body mass index (BMI) and small-for-gestational-age (SGA) infants is not well defined. We investigated the association between pre-pregnancy BMI and the risk of SGA infants in a Chinese population. We performed a cohort study among 12029 mothers with a pregnancy. This cohort consisted of pregnant women that were: normal-weight (62.02%), underweight (17.09%), overweight (17.77%) and obese (3.12%). Birth sizes were reduced in the underweight and obese groups compared with the normal-weight group. Linear regression analysis indicated that birth size was positively associated with BMI in both the underweight and normal-weight groups. Further analysis showed that 12.74% of neonates were SGA infants in the underweight group, higher than 7.43% of neonates reported in the normal-weight group (adjusted RR = 1.92; 95% CI: 1.61, 2.30). Unexpectedly, 17.60% of neonates were SGA infants in the obese group, much higher than the normal-weight group (adjusted RR = 2.17; 95% CI: 1.57, 3.00). Additionally, 18.40% of neonates were large-for-gestational-age (LGA) infants in the obese group, higher than 7.26% of neonates reported in the normal-weight group (adjusted RR = 3.00; 95% CI: 2.21, 4.06). These results suggest that pre-pregnancy underweight increases the risk of SGA infants, whereas obesity increases the risks of not only LGA infants, but also SGA infants.


2014 ◽  
Vol 77 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Aneta Sitek ◽  
Iwona Rosset ◽  
Dominik Strapagiel ◽  
Małgorzata Majewska ◽  
Lidia Ostrowska-Nawarycz ◽  
...  

Abstract The goal of the study was verification of fat mass and obesity-associated (FTO) gene polymorphisms as significant risk factors of obesity in the population of Polish children. Body mass index (BMI) and DNA were evaluated, where DNA was extracted from saliva, collected from 213 children at the age of 6-13 years. DNA was genotyped by PCR (polymerase chain reaction) and HRM (high resolution melting) techniques, as well as by direct sequencing. Three (3) FTO polymorphisms were identified: rs9939609, rs9926289 and rs76804286, the last polymorphism located between the first two. For the first time, absolute linkage disequilibrium (LD) of FTO gene rs9939609 and rs9926289 polymorphisms was confirmed in data for the Polish population (D’=1, r2=1). The lack of a complete dependence among the three single nucleotide polymorphisms (SNPs) of the FTO gene was a consequence of the concurrence of homozygotes with minor alleles A of rs9939609+rs9926289 of FTO (AA+AA) with major alleles of rs76804286 (GG). A case-control association analysis for BMI in obese children (n=51), as compared to normal-weight children (n=162), was based on the effects of genotypes homozygous for the minor alleles of the studied SNPs in recessive and codominant inheritance models (assuming an independent effect of each genotype). A comparison of children with normal BMI with obese children indicate a strong co-dominant effect of a genotype in homozygotes of minor alleles (AA+AA) of completely linked rs9939609+rs9926289 (OR at age 8.89 ± 1.54 years=4.87, 95% CI 1.81-13.12, p=0.002). An almost five-fold increase of obesity risk in the examined children indicates that the genetic factors, associated with excessive body weight gain, exert stronger effects in the early period of ontogenetic development vs. puberty and adulthood. The role of genetic factors in predisposing to obesity declines with age


2016 ◽  
Vol 116 (5) ◽  
pp. 805-815 ◽  
Author(s):  
Liane Correia-Costa ◽  
Teresa Sousa ◽  
Manuela Morato ◽  
Dina Cosme ◽  
Joana Afonso ◽  
...  

AbstractOxidative stress and nitric oxide (NO) appear to represent important links between obesity and cardiovascular, metabolic and/or renal disease. We investigated whether oxidative stress and NO production/metabolism are increased in overweight and obese prepubertal children and correlate with cardiometabolic risk and renal function. We performed a cross-sectional evaluation of 313 children aged 8–9 years. Anthropometrics, 24-h ambulatory blood pressure, pulse wave velocity (PWV), insulin resistance (homoeostasis model assessment index (HOMA-IR)), inflammatory/metabolic biomarkers, estimated glomerular filtration rate (eGFR), plasma total antioxidant status (TAS), plasma and urinary isoprostanes (P-Isop, U-Isop), urinary hydrogen peroxide (U-H2O2), and plasma and urinary nitrates and nitrites (P-NOx, U-NOx) were compared among normal weight, overweight and obese groups, according to WHO BMI z-score reference. U-Isop were increased in the obese group, whereas U-NOx were increased in both overweight and obese children. U-Isop were positively correlated with U-H2O2, myeloperoxidase (MPO), high-sensitivity C-reactive protein, HOMA-IR and TAG. TAS correlated negatively with U-Isop and MPO and positively with PWV. HOMA-IR and U-H2O2 were associated with higher U-Isop, independently of BMI and eGFR, and total cholesterol and U-H2O2 were associated with U-NOx, independently of BMI, eGFR values and P-NOx concentration. In overweight and obese children, eGFR decreased across P-NOx tertiles (median: 139·3 (25th, 75th percentile 128·0, 146·5), 128·0 (25th, 75th percentile 121·5, 140·4), 129·5 (25th, 75th percentile 119·4, 138·3), Pfor linear trend=0·003). We conclude that oxidant status and NO are increased in relation to fat accumulation and, even in young children, they translate into higher values of cardiometabolic risk markers and affect renal function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongyu Wang ◽  
Wenjing Ding ◽  
Chengcheng Ding ◽  
Haitian Chen ◽  
Weihua Zhao ◽  
...  

ObjectiveAs the high proportion of underweight pregnant women, omission of their weight gain and blood lipids management during gestation might lead to adverse pregnancy outcomes. This study aimed to determine the relationship between lipid profile and risks for adverse pregnancy outcomes in pre-pregnancy underweight women.MethodsThis study was part of an ongoing cohort study including Chinese gravidas delivered from January 2015 to December 2016. Included subjects were grouped into underweight, normal-weight, and overweight by BMI before conception. Logistic regression was used to assess the association between lipid profiles during second trimester and adverse obstetric outcomes in each group. A subgroup analysis according to the gestational weight gain, in which subjects in each group were divided into above and within the Institute of Medicine (IOM) recommendations, was performed.ResultsA total of 6, 223 women were included. The proportion of underweight (19.3%) was similar to that of overweight women (19.4%) in South China. Peripheral total cholesterol (TC) level in underweight women was significantly higher than that in overweight women (P <0.001). After adjusting maternal age, TC level was positively correlated to the risk for large-for-gestational-age (LGA) [aOR =2.24, 95%CI (1.08, 4.63)], and negatively related to the risk for small-for-gestational age (SGA) [aOR =0.71, 95%CI (0.59, 0.85)] in underweight women, but not in normal-weight or overweight women. The subgroup analysis showed that maternal TC level was positively correlated with the risk of LGA only in underweight women who gained weight more than the IOM recommendations.ConclusionUnderweight pregnant women with high TC levels had a higher risk for LGA, especially among women whose gestational weight gain were above the IOM recommendations. Therefore, clinical management of lipids and weight gain during gestation should also be recommended for underweight women.


BMJ Open ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. e027160 ◽  
Author(s):  
Caroline Kadji ◽  
Mieke M Cannie ◽  
Andrew Carlin ◽  
Jacques C Jani

IntroductionMacrosomia refers to growth beyond a specific threshold, regardless of gestational age. These fetuses are also frequently referred to as large for gestational age (LGA). Various cut-offs have been used but for research purposes, a cut-off above the 95th centile for birth weight is often preferred because it defines 90% of the population as normal weight. The use of centiles, rather than estimated weights, also accommodates preterm macrosomic infants, although most of the complications, maternal and fetal, arise during the delivery of large babies at term. This means that accurate identification of LGA fetuses (≥95th centile) may play an important role in guiding obstetric interventions, such as induction of labour or caesarean section. Traditionally, identification of fetuses suspected of macrosomia has been based on biometric measurements using two-dimensional (2D) ultrasound (US), yet this method is rather sub-optimal. We present a protocol (V.2.1, date 19 May 2016) for the estimation of fetal weight (EFW) by MRI to PREdict neonatal MACROsomia (PREMACRO study), which is a prospective observational clinical study designed to determine whether MRI at 36 + 0 to 36 + 6 weeks of gestation, as compared with 2D US, can improve the identification of LGA neonates ≥95th centile.Methods and analysisAll eligible women attending the 36-week clinic will be invited to participate in the screening study for LGA fetuses ≥95th centile and will undergo US-EFW and MRI-EFW within minutes of each other. From these estimations, a centile will be derived which will be compared with the centile of birth weight used as the gold standard. Besides birth weight, other pregnancy and neonatal outcomes will be collected and analysed. The first enrolment for the study was in May 2016. As of September 2018, 2004 women have been screened and recruited to the study. The study is due to end in April 2019.Ethics and disseminationThe study will be conducted in accordance with the International Conference on Harmonisation for good clinical practice and the appropriate regulatory requirement(s). A favourable ethical opinion was obtained from the Ethics Committee of the University Hospital Brugmann, reference number CE2016/44. Results will be published in peer-reviewed journals and disseminated at international conferences.Trial registration numberNCT02713568.


Oncotarget ◽  
2016 ◽  
Vol 7 (52) ◽  
pp. 86511-86521 ◽  
Author(s):  
Xian-hua Lin ◽  
Dan-dan Wu ◽  
Ling Gao ◽  
Jun-yu Zhang ◽  
Hai-tao Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document