scholarly journals The Population Diversity of Candidate Genes for Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 778
Author(s):  
Jana Bubenikova ◽  
Leona Vychodilova ◽  
Karla Stejskalova ◽  
Jan Futas ◽  
Jan Oppelt ◽  
...  

Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results. The objective of this study was to compare the genetic diversity of different breeds on a panel of candidate genes potentially affecting FCoV infection. One hundred thirteen cats of six breeds were genotyped on a panel of sixteen candidate genes. SNP allelic/haplotype frequencies were calculated; pairwise FST and molecular variance analyses were performed. Principal coordinate (PCoA) and STRUCTURE analyses were used to infer population structure. Interbreed differences in allele frequencies were observed. PCoA analysis performed for all genes of the panel indicated no population substructure. In contrast to the full marker set, PCoA of SNP markers associated with FCoV shedding (NCR1 and SLX4IP) showed three clusters containing only alleles associated with susceptibility to FCoV shedding, homozygotes and heterozygotes for the susceptibility alleles, and all three genotypes, respectively. Each cluster contained cats of multiple breeds. Three clusters of haplotypes were identified by PCoA, two clusters by STRUCTURE. Haplotypes of a single gene (SNX5) differed significantly between the PCoA clusters.


2003 ◽  
Vol 84 (10) ◽  
pp. 2735-2744 ◽  
Author(s):  
D. D. Addie ◽  
I. A. T. Schaap ◽  
L. Nicolson ◽  
O. Jarrett

To examine the mode of natural transmission and persistence of feline coronavirus (FCoV), FCoV strains shed by domestic cats were investigated over periods of up to 7 years. An RT-PCR that amplified part of the 3′ end of the viral spike (S) gene was devised to distinguish FCoV types I and II. All but 1 of 28 strains of FCoV from 43 cats were type I. Nucleotide identities of the amplified 320 bp product from 49 type I FCoVs ranged from 79 to 100 %. The consensus partial S sequence of isolates recovered from persistently infected cats at time intervals spanning years was generally conserved. While most cats were infected with a single strain, a few may have been infected by more than one strain. Cats that were transiently infected and ceased shedding could be re-infected with either the same, or a different, strain. In most cases, whether a cat became persistently or transiently infected was independent of the virus strain. However, one strain was unusual in that it infected the majority of cats in the household simultaneously and was still being shed 18 months later. Factors that influence whether FCoV establishes lifelong infection in some cats and not others are determined mainly by the host response to infection.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gehendra Bhattarai ◽  
Wei Yang ◽  
Ainong Shi ◽  
Chunda Feng ◽  
Braham Dhillon ◽  
...  

Abstract Background Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. Results Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69–11.28 Kb of the peak SNP. Conclusions Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonio Reverter ◽  
Maria Ballester ◽  
Pamela A. Alexandre ◽  
Emilio Mármol-Sánchez ◽  
Antoni Dalmau ◽  
...  

Abstract Background Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical “single-gene-single-trait” approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. Results In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP–P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance. Conclusions Taken together, our results identified regulators, candidate genes, and mechanisms linked with microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to improve host-performance and microbial traits.



2021 ◽  
Vol 22 (7) ◽  
pp. 3477
Author(s):  
Julia Zaborowska ◽  
Bartosz Łabiszak ◽  
Annika Perry ◽  
Stephen Cavers ◽  
Witold Wachowiak

Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism.



Plant Disease ◽  
2021 ◽  
Author(s):  
Dennis Katuuramu ◽  
Sandra Branham ◽  
Amnon Levi ◽  
Patrick Wechter

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas Citrullus amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 - 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding disease resistance proteins, leucine-rich repeat receptor-like protein kinase, and WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.



2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.



2021 ◽  
Author(s):  
Dev Paudel ◽  
Rocheteau Dareus ◽  
Julia Rosenwald ◽  
Maria Munoz-Amatriain ◽  
Esteban Rios

Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 367 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.



2018 ◽  
pp. 583-591
Author(s):  
Yi Chen Lee ◽  
M Javed Iqbal ◽  
Victor N Njiti ◽  
Stella Kantartzi ◽  
David A. Lightfoot

Soybean (Glycine max (L.) Merr.) cultivars differ in their resistance to sudden death syndrome (SDS), caused by Fusarium virguliforme. Breeding for improving SDS response has been challenging, due to interactions among the 18-42 known resistance loci. Four quantitative trait loci (QTL) for resistance to SDS (cqRfs–cqRfs3) were clustered within 20 cM of the rhg1 locus underlying resistance to soybean cyst nematode (SCN) on Chromosome (Chr.) 18. Another locus on Chr. 20 (cqRfs5) was reported to interact with this cluster. The aims here were to compare the inheritance of resistance to SDS in a near isogenic line (NIL) population that was fixed for resistance to SCN but segregated at two of the four loci (cqRfs1 and cqRfs) for SDS resistance; to examine the interaction with the locus on Chr. 20; and to identify candidate genes underlying QTL. Used were; a NIL population derived from residual heterozygosity in an F5:7 recombinant inbred line EF60 (lines 1-38); SDS response data from two locations and years; four segregating microsatellite and 1,500 SNP markers. Polymorphic regions were found from 2,788 Kbp to 8,938 Kbp on Chr. 18 and 33,100 Kbp to 34,943 Kbp on Chr. 20 that were significantly (0.005 < P > 0.0001) associated with resistance to SDS. The QTL fine maps suggested that the two loci on Chr. 18 were three loci (cqRfs1, cqRfs, and cqRfs19). Candidate genes were inferred.  An epistatic interaction was inferred between Chr. 18 and Chr. 20 loci. Therefore, SDS resistance QTL were both complex and interacting.



2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongfeng Li ◽  
Xingguo Zhang ◽  
Kunkun Zhao ◽  
Kai Zhao ◽  
Chengxin Qu ◽  
...  

Seed size/weight, a key domestication trait, is also an important selection target during peanut breeding. However, the mechanisms that regulate peanut seed development are unknown. We re-sequenced 12 RNA samples from developing seeds of two cultivated peanut accessions (Lines 8106 and 8107) and wild Arachis monticola at 15, 30, 45, and 60 days past flowering (DPF). Transcriptome analyses showed that ∼36,000 gene loci were expressed in each of the 12 RNA samples, with nearly half exhibiting moderate (2 ≤ FPKM &lt; 10) expression levels. Of these genes, 12.2% (4,523) were specifically expressed during seed development, mainly at 15 DPF. Also, ∼12,000 genes showed significant differential expression at 30, 45, and/or 60 DPF within each of the three peanut accessions, accounting for 31.8–34.1% of the total expressed genes. Using a method that combined comprehensive transcriptome analysis and previously mapped QTLs, we identified several candidate genes that encode transcription factor TGA7, topless-related protein 2, IAA-amino acid hydrolase ILR1-like 5, and putative pentatricopeptide repeat-containing (PPR) protein. Based on sequence variations identified in these genes, SNP markers were developed and used to genotype both 30 peanut landraces and a genetic segregated population, implying that EVM0025654 encoding a PPR protein may be associated with the increased seed size/weight of the cultivated accessions in comparison with the allotetraploid wild peanut. Our results provide additional knowledge for the identification and functional research into candidate genes responsible for the seed size/weight phenotype in peanut.



Sign in / Sign up

Export Citation Format

Share Document