scholarly journals Kinetic Changes of Peripheral Blood Monocyte Subsets and Expression of Co-Stimulatory Molecules during Acute Dengue Virus Infection

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1458
Author(s):  
Sakaorat Lertjuthaporn ◽  
Rassamon Keawvichit ◽  
Korakot Polsrila ◽  
Kasama Sukapirom ◽  
Ampaiwan Chuansumrit ◽  
...  

Monocytes, one of the main target cells for dengue virus (DENV) infection, contribute to the resolution of viremia and to pathogenesis. We performed a longitudinal study by a detailed phenotypic comparison of classical (CD14++CD16−, non-classical (CD14+CD16++) and intermediate (CD14++CD16+) monocyte subsets in blood samples from dengue fever (DF) to the severe dengue hemorrhagic fever (DHF) and healthy individuals. Various costimulatory molecules of CD40, CD80, CD86 and inducible costimulatory ligand (ICOSL) expressed on these three monocyte subsets were also analyzed. DENV-infected patients showed an increase in the frequency of intermediate monocytes and a decrease in the classical monocytes when compared to healthy individuals. Although these differences did not correlate with disease severity, changes during the early phase of infection gradually returned to normal in the defervescence phase. Moreover, decreased frequency of classical monocytes was associated with a significant up-regulation of co-stimulatory molecules CD40, CD86 and ICOSL. Kinetics of these co-stimulatory molecule-expressing classical monocytes showed different patterns throughout the sampling times of acute DENV infection. Different distribution of monocyte subsets and their co-stimulatory molecules in the peripheral blood during acute infection might exacerbate immune responses like cytokine storms and ADE, and future studies on intracellular molecular pathways utilized by these monocyte linages are warranted.

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Matteo Ferrari ◽  
Alessandra Zevini ◽  
Enrico Palermo ◽  
Michela Muscolini ◽  
Magdalini Alexandridi ◽  
...  

ABSTRACT Dengue virus (DENV) is a mosquito-borne virus that infects upward of 300 million people annually and has the potential to cause fatal hemorrhagic fever and shock. While the parameters contributing to dengue immunopathogenesis remain unclear, the collapse of redox homeostasis and the damage induced by oxidative stress have been correlated with the development of inflammation and progression toward the more severe forms of disease. In the present study, we demonstrate that the accumulation of reactive oxygen species (ROS) late after DENV infection (>24 hpi) resulted from a disruption in the balance between oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant response. The DENV NS2B3 protease complex strategically targeted Nrf2 for degradation in a proteolysis-independent manner; NS2B3 licensed Nrf2 for lysosomal degradation. Impairment of the Nrf2 regulator by the NS2B3 complex inhibited the antioxidant gene network and contributed to the progressive increase in ROS levels, along with increased virus replication and inflammatory or apoptotic gene expression. By 24 hpi, when increased levels of ROS and antiviral proteins were observed, it appeared that the proviral effect of ROS overcame the antiviral effects of the interferon (IFN) response. Overall, these studies demonstrate that DENV infection disrupts the regulatory interplay between DENV-induced stress responses, Nrf2 antioxidant signaling, and the host antiviral immune response, thus exacerbating oxidative stress and inflammation in DENV infection. IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen that threatens 2.5 billion people in more than 100 countries annually. Dengue infection induces a spectrum of clinical symptoms, ranging from classical dengue fever to severe dengue hemorrhagic fever or dengue shock syndrome; however, the complexities of DENV immunopathogenesis remain controversial. Previous studies have reported the importance of the transcription factor Nrf2 in the control of redox homeostasis and antiviral/inflammatory or death responses to DENV. Importantly, the production of reactive oxygen species and the subsequent stress response have been linked to the development of inflammation and progression toward the more severe forms of the disease. Here, we demonstrate that DENV uses the NS2B3 protease complex to strategically target Nrf2 for degradation, leading to a progressive increase in oxidative stress, inflammation, and cell death in infected cells. This study underlines the pivotal role of the Nrf2 regulatory network in the context of DENV infection.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88 ◽  
Author(s):  
Jisang Park ◽  
Hyun-Young Lee ◽  
Ly Tuan Khai ◽  
Nguyen Thi Thu Thuy ◽  
Le Quynh Mai ◽  
...  

Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.


2007 ◽  
Vol 204 (5) ◽  
pp. 979-985 ◽  
Author(s):  
Kerstin Lühn ◽  
Cameron P. Simmons ◽  
Edward Moran ◽  
Nguyen Thi Phuong Dung ◽  
Tran Nguyen Bich Chau ◽  
...  

Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4+CD25highFoxP3+ T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Sheila Cabezas ◽  
Gustavo Bracho ◽  
Amanda L. Aloia ◽  
Penelope J. Adamson ◽  
Claudine S. Bonder ◽  
...  

ABSTRACTSevere dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infectionin vitrowere investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCEDengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells)in vivo. Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.


Medicina ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 36 ◽  
Author(s):  
Ida Marie Rundgren ◽  
Elisabeth Ersvær ◽  
Aymen Bushra Ahmed ◽  
Anita Ryningen ◽  
Øystein Bruserud

Background and Objectives: Autologous and allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies, and monocytes are probably involved in hematological reconstitution as well as posttransplant immunoregulation. The aim of our study was to investigate the levels of circulating monocyte subsets in allotransplant recipients. Materials and Methods: The levels of the classical, intermediate, and nonclassical monocyte subsets were determined by flow cytometry. Sixteen patients and 18 healthy controls were included, and the levels were analyzed during pretransplant remission (n = 13), early posttransplant during cytopenia (n = 9), and early reconstitution (n = 9). Results: Most patients in remission showed a majority of classical monocytes. The patients showed severe early posttransplant monocytopenia, but the total peripheral blood monocyte counts normalized very early on, and before neutrophil and platelet counts. During the first 7–10 days posttransplant (i.e., during cytopenia) a majority of the circulating monocytes showed a nonclassical phenotype, but later (i.e., 12–28 days posttransplant) the majority showed a classical phenotype. However, the variation range of classical monocytes was wider for patients in remission and during regeneration than for healthy controls. Conclusions: The total peripheral blood monocyte levels normalize at the very early stages and before neutrophil reconstitution after stem cell transplantation, and a dominance of classical monocytes is reached within 2–4 weeks posttransplant.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2772-2772
Author(s):  
Khao T.D. Thai ◽  
Josta A. Wismeijer ◽  
Catrien M. Zumpolle ◽  
Menno D. de Jong ◽  
Peter J. Vde ries ◽  
...  

Abstract Abstract 2772 Introduction: One of the characteristic features of dengue virus (DENV) infection is the occurrence of leukopenia and thrombocytopenia, probably resulting from virus induced bone marrow suppression. Despite the general bone marrow suppression, polyclonal peripheral blood plasmacytosis has occasionally been described in DENV infected patients. The frequency of peripheral blood (PB) plasmacytosis in patients with dengue infection, the origin of these plasma cells (PCs) and the mechanisms by which they appear in the blood are not known. We initiated this prospective observational study to quantify and describe the kinetics and phenotype of PB plasmacells (PCs) in these patients. Methods: Morphological examination of the peripheral blood smear was performed in 35 sequential returned travelers suspected of DENV infection, with a history of less than 14 days of fever. Flow cytometric (FC) analysis for the characterization and immunophenotyping of lymphocyte subsets and PCs was performed in 31 patients. Follow-up samples were available for 8 patients. Results: Our results show that PB plasmacytosis is a very common hematological finding in DENV infection, with extreme values of up to 36% of total white blood cells in some patients. Depending on the number of days since the onset of fever at presentation, PB plasmacytosis was observed in 64% to 73% of 28 patients with confirmed DENV infection, and in none of 7 patients with other febrile illnesses. PB plasmacytosis was the most pronounced before 7 days after onset of illness and declined rapidly thereafter, to completely disappear after 14 days of illness. The median percentage of PCs at day 7 was 2.5% (range 0–36%; 25–75 interquartile range: 0–8%). The median percentage of PCs was significantly higher in patients with secondary DENV infection than in patients with primary infection (4.5% versus 1.0%; p=0.05). Viral RNA was detectable in 18 of 28 DENV infected patients with a highly variable viral load, but there was no correlation between viral load and percentage of PCs. We found an excellent correlation between percentage of PCs as assessed by morphology and by flow cytometry (r2= 0.85). The majority of CD138+ PCs (89%) had a shared immunophenotype (CD45+/CD19−/CD56−), which differed from normal plasmacells which are generally CD19+. In all cases the PCs were polyclonal. Conclusion: PB plasmacytosis, characterized by a transient presence of polyclonal PCs in the circulation, is a common event in DENV infection and is probably the result of a vigorous humoral immune response to dengue. With an increasing number of travelers to areas where dengue virus is endemic, it is important also for hematologists to recognize this benign cause of sometimes extreme plasmacytosis, for which no invasive procedures such as bone marrow examinations are needed. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ashley L St John ◽  
Abhay PS Rathore ◽  
Bhuvanakantham Raghavan ◽  
Mah-Lee Ng ◽  
Soman N Abraham

Dengue Virus (DENV), a flavivirus spread by mosquito vectors, can cause vascular leakage and hemorrhaging. However, the processes that underlie increased vascular permeability and pathological plasma leakage during viral hemorrhagic fevers are largely unknown. Mast cells (MCs) are activated in vivo during DENV infection, and we show that this elevates systemic levels of their vasoactive products, including chymase, and promotes vascular leakage. Treatment of infected animals with MC-stabilizing drugs or a leukotriene receptor antagonist restores vascular integrity during experimental DENV infection. Validation of these findings using human clinical samples revealed a direct correlation between MC activation and DENV disease severity. In humans, the MC-specific product, chymase, is a predictive biomarker distinguishing dengue fever (DF) and dengue hemorrhagic fever (DHF). Additionally, our findings reveal MCs as potential therapeutic targets to prevent DENV-induced vasculopathy, suggesting MC-stabilizing drugs should be evaluated for their effectiveness in improving disease outcomes during viral hemorrhagic fevers.


Author(s):  
Átila Duque Rossi ◽  
Luiza Mendonça Higa ◽  
Alice Laschuk Herlinger ◽  
Marcelo Ribeiro-Alves ◽  
Mariane Talon de Menezes ◽  
...  

Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-β signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.


2021 ◽  
Vol 3 ◽  
Author(s):  
Ada Maria Barcelos Alves ◽  
Simone Morais Costa ◽  
Paolla Beatriz Almeida Pinto

Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ting-Jing Shen ◽  
Chia-Ling Chen ◽  
Ming-Kai Jhan ◽  
Po-Chun Tseng ◽  
Rahmat Dani Satria ◽  
...  

Propofol, 2,6-diisopropylphenol, is a short-acting intravenous sedative agent used in adults and children. Current studies show its various antimicrobial as well as anti-inflammatory effects. Dengue virus (DENV) is an emerging infectious pathogen transmitted by mosquitoes that causes mild dengue fever and progressive severe dengue diseases. In the absence of safe vaccines and antiviral agents, adjuvant treatments and supportive care are generally administered. This study investigated the antiviral effects of propofol against DENV infection and cellular inflammation by using an in vitro cell model. Treatment with propofol significantly inhibited DENV release 24 h postinfection in BHK-21 cells. Furthermore, it also blocked viral protein expression independent of the translational blockade. Propofol neither caused inhibitory effects on endosomal acidification nor prevented dsRNA replication. Either the proinflammatory TNF-α or the antiviral STAT1 signaling was reduced by propofol treatment. These results provide evidence to show the potential antiviral effects of the sedative propofol against DENV infection and cellular inflammation.


Sign in / Sign up

Export Citation Format

Share Document