scholarly journals The Mosquito Immune System and the Life of Dengue Virus: What We Know and Do Not Know

Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 77 ◽  
Author(s):  
Debica Mukherjee ◽  
Sandeepan Das ◽  
Feroza Begum ◽  
Sweety Mal ◽  
Upasana Ray

Flaviviruses are largely transmitted to humans by their arthropod vectors such as mosquitoes or ticks. The dengue virus (DENV) is one of the members of the family Flaviviridae and is the causative agent of dengue fever. In the mosquito vector, DENV enters through viremic blood meal and replicates in the mid-gut. Newly formed virion particles circulate to various mosquito organs and get transmitted to the next host in subsequent bites. Aedes aegypti and Aedes albopictus have intricate immune control to allow DENV production at a sub-pathogenic level. In the mosquito, antimicrobial peptides (AMP) and RNA inference (RNAi) are the two main antiviral strategies used against DENV. Apart from innate immunity, mosquito resident microbes play a significant role in modulating DENV replication. In this review, we discuss different immune mechanisms and preventive strategies that act against DENV in two of its vectors: Aedes aegypti and Aedes albopictus.

2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 343
Author(s):  
Manjin Li ◽  
Dan Xing ◽  
Duo Su ◽  
Di Wang ◽  
Heting Gao ◽  
...  

Dengue virus (DENV), a member of the Flavivirus genus of the Flaviviridae family, can cause dengue fever (DF) and more serious diseases and thus imposes a heavy burden worldwide. As the main vector of DENV, mosquitoes are a serious hazard. After infection, they induce a complex host–pathogen interaction mechanism. Our goal is to further study the interaction mechanism of viruses in homologous, sensitive, and repeatable C6/36 cell vectors. Transcriptome sequencing (RNA-Seq) technology was applied to the host transcript profiles of C6/36 cells infected with DENV2. Then, bioinformatics analysis was used to identify significant differentially expressed genes and the associated biological processes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify the sequencing data. A total of 1239 DEGs were found by transcriptional analysis of Aedes albopictus C6/36 cells that were infected and uninfected with dengue virus, among which 1133 were upregulated and 106 were downregulated. Further bioinformatics analysis showed that the upregulated DEGs were significantly enriched in signaling pathways such as the MAPK, Hippo, FoxO, Wnt, mTOR, and Notch; metabolic pathways and cellular physiological processes such as autophagy, endocytosis, and apoptosis. Downregulated DEGs were mainly enriched in DNA replication, pyrimidine metabolism, and repair pathways, including BER, NER, and MMR. The qRT-PCR results showed that the concordance between the RNA-Seq and RT-qPCR data was very high (92.3%). The results of this study provide more information about DENV2 infection of C6/36 cells at the transcriptome level, laying a foundation for further research on mosquito vector–virus interactions. These data provide candidate antiviral genes that can be used for further functional verification in the future.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


2014 ◽  
Vol 3 (2) ◽  
pp. 732-749 ◽  
Author(s):  
Max Moreno-Madriñán ◽  
William Crosson ◽  
Lars Eisen ◽  
Sue Estes ◽  
Maurice Estes Jr. ◽  
...  

2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Meiranty C. Pangerapan ◽  
Beivy J. Kolondam

Abstract: Dengue virus is a single-stranded RNA virus that belongs to Flaviviridae family. This virus causes dengue fever which is transmitted by Aedes aegypti dan Aedes albopictus. There are four serotypes of dengue virus; all of them can cause dengue fever. Understanding the genomics of dengue virus is important for research and diagnostics. The genome of dengue virus is 11 kilo-base long. It consists of 5’-untranslated region (5’-UTR), three structural genes (coding capsid protein, pre-membrane/membrane, and envelope), seven non-structural genes (coding NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 proteins) and 3’-UTR. Non-structural genes are encoding proteins of viral RNA replication, interferon response, viral assembly and secretion, endoplasmic reticulum membrane invagination induction, immune-mediator induction, and RNA 5’-caping.Keywords: dengue virus, genome, structural genes, non-structural genes, untranslated region.Abstrak: Virus dengue merupakan virus RNA beruntai tunggal yang termasuk dalam famili Flaviviridae. Virus ini adalah penyebab penyakit demam berdarah dengue yang ditransmisikan melalui nyamuk Aedes aegypti dan Aedes albopictus. Ada empat serotipe virus dengue yang telah dikenal secara luas yang ada semuanya dapat menimbulkan penyakit demam berdarah. Pemahaman tentang genomik virus dengue sangat penting untuk pengembangan penelitian dan juga untuk keperluan diagnostik. Genom virus dengue memiliki panjang 11 kilo basa. Genomnya tersusun atas 5’-untranslated region (5’-UTR), tiga gen struktural (mengodekan protein kapsid, premembran/membran dan amplop), tujuh gen non-struktural (mengodekan protein NS1, NS2A, NS2B, NS3, NS4A, NS4B dan NS5) dan 3’-UTR. Gen-gen non-struktural mengodekan protein untuk replikasi RNA virus, respon interferon, perakitan, sekresi partikel virus, menginduksi invaginasi membran retikulum endoplasma, induksi imunomediator dan penambahan tudung pada ujung 5’ RNA.Kata kunci: virus dengue, genom, gen struktural, gen non-struktural, untranslated region


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Ivan T. Sigarlaki ◽  
Victor D. Pijoh ◽  
Josef S.B. Tuda

Abstract: Dengue hemorrhagic fever (DHF) is a viral disease that can cause death within a very short time (a few days). The main vector of DHF is Aedes aegypti mosquito, whereas the potential vector is Aedes albopictus. In the context of prevention of DHF, environmental data associated with bionomics mosquito vector of DHF, the Maya Index, are needed. DHF is still a public health problem. And for the case that there is in the city of Manado in 2013, in this case in the district of Singkil, acquired as many as 43 cases of dengue hemorrhagic fever. This study aimed to describe the Maya Index at the houses of dengue hemorrhagic fever patients in the village of West Kombos, Singkil districts. Maya Index is based on hygiene risk index (HRI) and breeding risk index (BRI). This was a descriptive study. Samples were houses of patients with DHF in 2015 from January to December. The results showed that there were four patients during the year 2015. Observation of the four houses and calculation of the data indicated that two houses were in low category of Maya Index, one house in medium category of Maya Index, and one house in high category of Maya Index. Keywords: dengue hemorrhagic fever, Maya index Abstrak: Demam berdarah dengue (DBD) adalah penyakit virus yang berbahaya karena dapat menyebabkan kematian dalam waktu yang sangat singkat (beberapa hari). Vektor utama DBD ialah nyamuk Aedes aegypti, sedangkan vektor potensialnya ialah Aedes albopictus. Dalam konteks penanggulangan DBD, juga diperlukan data lingkungan terkait dengan segi bionomik nyamuk vektor DBD, yaitu Indeks Maya. DBD masih merupakan masalah kesehatan masyarakat di kota Manado. Pada tahun 2013, di Kecamatan Singkil didapatkan sebanyak 43 kasus DBD. Penelitian ini bertujuan untuk mengetahui gambaran Indeks Maya pada rumah penderita DBD di Kelurahan Kombos Barat Kecamatan Singkil. Indeks Maya didasarkan pada hygiene risk index (HRI) dan breeding risk index (BRI). Jenis penelitian ialah deskriptif. Sampel penelitian ialah rumah dari penderita DBD tahun 2015 sejak bulan Januari-Desember. Dari hasil penelitian didapatkan empat penderita sepanjang tahun 2015 dan setelah dilakukan observasi ke rumah penderita dan perhitungan data didapatkan dua rumah masuk pada kategori Indeks Maya rendah, satu rumah masuk pada kategori Indeks Maya sedang, dan satu rumah masuk kategori Indeks Maya tinggi.Kata kunci: demam berdarah dengue, indeks Maya


Author(s):  
Aliya Jabeen ◽  
Jamil A Ansari ◽  
Aamer Ikram ◽  
Mumtaz Ali Khan ◽  
Moin Iqbal Qaisrani ◽  
...  

Abstract Our article documents the presence of Aedes albopictus (Skuse) from urban and rural locations in the lower Himalaya Mountains, northern Pakistan. Larvae were collected from graveyards, junkyards, plant nurseries, parks, and houses. Used tires, bird drinking pots, and water storage containers were the most common containers used by this mosquito. In the absence of Aedes aegypti (L.) (Diptera: Culicidae), Ae. albopictus appears to be the primary vector of recent dengue virus outbreaks.


Sign in / Sign up

Export Citation Format

Share Document