scholarly journals Exercise Modifies the Gut Microbiota with Positive Health Effects

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Vincenzo Monda ◽  
Ines Villano ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Teresa Esposito ◽  
...  

The human gastrointestinal tract (GIT) is inhabited by a wide cluster of microorganisms that play protective, structural, and metabolic functions for the intestinal mucosa. Gut microbiota is involved in the barrier functions and in the maintenance of its homeostasis. It provides nutrients, participates in the signaling network, regulates the epithelial development, and affects the immune system. Considering the microbiota ability to respond to homeostatic and physiological changes, some researchers proposed that it can be seen as an endocrine organ. Evidence suggests that different factors can determine changes in the gut microbiota. These changes can be both quantitative and qualitative resulting in variations of the composition and metabolic activity of the gut microbiota which, in turn, can affect health and different disease processes. Recent studies suggest that exercise can enhance the number of beneficial microbial species, enrich the microflora diversity, and improve the development of commensal bacteria. All these effects are beneficial for the host, improving its health status. In this paper, we intend to shed some light over the recent knowledge of the role played by exercise as an environmental factor in determining changes in microbial composition and how these effects could provide benefits to health and disease prevention.

2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2019 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Mohd Baasir Gaisawat ◽  
Chad W. MacPherson ◽  
Julien Tremblay ◽  
Amanda Piano ◽  
Michèle M. Iskandar ◽  
...  

Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota. In the present study, we assessed the ability of several single strain probiotics and a probiotic mixture to change the metabolic functions of normal and C. difficile-infected fecal samples. The production of short-chain fatty acids (SCFAs), hydrogen sulfide (H2S), and ammonia was measured, and changes in microbial composition were assessed by 16S rRNA gene amplicon sequencing. The C. difficile-infection in fecal samples resulted in a significant decrease (p < 0.05) in SCFA and H2S production, with a lower microbial alpha diversity. All probiotic treatments were associated with significantly increased (p < 0.05) levels of SCFAs and restored H2S levels. Probiotics showed no effect on microbial composition of either normal or C. difficile-infected fecal samples. These findings indicate that probiotics may be useful to improve the metabolic dysregulation associated with C. difficile infection.


2018 ◽  
Vol 11 (4) ◽  
pp. 98 ◽  
Author(s):  
Bahtiyar Yilmaz ◽  
Hai Li

Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.


2014 ◽  
Vol 28 (8) ◽  
pp. 1221-1238 ◽  
Author(s):  
Gerard Clarke ◽  
Roman M. Stilling ◽  
Paul J. Kennedy ◽  
Catherine Stanton ◽  
John F. Cryan ◽  
...  

The concept that the gut microbiota serves as a virtual endocrine organ arises from a number of important observations. Evidence for a direct role arises from its metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence the function of distal organs and systems. For example, metabolism of carbohydrates results in the production of short-chain fatty acids, such as butyrate and propionate, which provide an important source of nutrients as well as regulatory control of the host digestive system. This influence over host metabolism is also seen in the ability of the prebiotic inulin to influence production of relevant hormones such as glucagon-like peptide-1, peptide YY, ghrelin, and leptin. Moreover, the probiotic Lactobacillus rhamnosus PL60, which produces conjugated linoleic acid, has been shown to reduce body-weight gain and white adipose tissue without effects on food intake. Manipulating the microbial composition of the gastrointestinal tract modulates plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Indirectly and through as yet unknown mechanisms, the gut microbiota exerts control over the hypothalamic-pituitary-adrenal axis. This is clear from studies on animals raised in a germ-free environment, who show exaggerated responses to psychological stress, which normalizes after monocolonization by certain bacterial species including Bifidobacterium infantis. It is tempting to speculate that therapeutic targeting of the gut microbiota may be useful in treating stress-related disorders and metabolic diseases.


2021 ◽  
Vol 10 (10) ◽  
pp. e489101019166 ◽  
Author(s):  
Luisa Ferreira da Cruz ◽  
Israel Lucas Antunes Souza ◽  
Larissa Dias de Souza ◽  
Marcelo Gonzaga de Freitas Araújo ◽  
Paulo Afonso Granjeiro

The gastrointestinal tract houses the largest and most complex community of microorganisms, and this bacterial colonization of the human intestine by environmental microbes begins immediately after the birth. The intestinal microbiota has several important and unique functions, including metabolic functions such as the biotransformation of drugs and the digestion of dietary compounds; a mucosal barrier function by inhibiting the invasion of pathogens and an immunomodulatory function. On the other hand, some commensal bacteria can be pathogenic, causing infections if the natural host is compromised and, in predisposed hosts, the intestinal microbiota can be involved in nosocomial infection. The translocation of bacteria through the intestinal wall is considered one of the main causes of nosocomial infections. The aim of this review is to provide a comprehensive view of the human gut microbiota, its main functions, its role in health and disease, addressing the correlation between intestinal microbial composition and nosocomial infections.


RSC Advances ◽  
2018 ◽  
Vol 8 (74) ◽  
pp. 42380-42389 ◽  
Author(s):  
Xiang-qian Wang ◽  
Ai-hua Zhang ◽  
Jian-hua Miao ◽  
Hui Sun ◽  
Guang-li Yan ◽  
...  

The human gastrointestinal tract colonizes a large number of microbial microflora to participate in various metabolic processes in the human body, and plays a major role in the host immune response.


2020 ◽  
Author(s):  
Yan Li ◽  
Haiting Sun ◽  
Yufen Huang ◽  
Anqi Yin ◽  
Ping Wang ◽  
...  

Abstract BackgroundAttention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous psychiatric disorder that can be divided into inattentive (I-ADHD), hyperactive-impulsive (HI-ADHD), and combined (C-ADHD) subtypes. Different early life events and environmental factors correlated with the gut microbiota community have been implicated in the development of ADHD. However, whether different ADHD symptomatic presentations are associated with distinct microbiota composition and function still unknown. Therefore, we carried out metagenomic analysis from 207 subjects to characterize the gut microbial profiles in ADHD and subgroup patients.ResultsThe current study revealed that the gut microbiota composition (beta diversity) can be effectively distinguished between C-ADHD patients and HCs, but not I-ADHD patients and HCs, nor general ADHD patients and HCs. Features include underrepresentation of 8 species belonging to the genus Bacteroides and enrichment of 5 species of Bifidobacterium and Prevotella in general ADHD patients (all p < 0.05). Eight of the above species became progressively reduced (ovatus, thetaiotaomicron, intestinalis, cellulosilyticus, and fluxus belonging to the genus Bacteroides) or enriched (Prevotella_copri, Prevotella_buccae and Bifidobacterium_breve) from healthy controls (HCs) to I-ADHD and C-ADHD patients. Predicted metabolic functions from these distinguished gut microbial markers described a certain compensatory host metabolism in ADHD and subgroup patients. Particularly, pyridoxal 5'-phosphate (a dominant vitamin B6 active type) biosynthesis pathways were significantly reduced in C-ADHD patients, because serum vitamin B6 deficiency in ADHD patients was found previously. Of note, we identified diverse virulence factor and antibiotic resistance from the gut microbiota of ADHD patients. The abundance of antibiotic resistance ontology ANT(9)-Ia positively correlated with the abundance of Prevotella_amnii, which was enriched in ADHD patients. Moreover, species-based bacterial markers were used to construct classifiers and achieved a higher AUC of 0.87 in C-ADHD vs. HC than that in ADHD vs. HC (AUC = 0.84).ConclusionsThese findings uncover alterations in microbial composition in subgroup patients and provide potential biomarkers for diagnosis different symptomatic presentations for ADHD.Trial registration: ClinicalTrials.gov, NCT03447223. Registered 27 February 2018, https://clinicaltrials.gov/ct2/show/NCT03447223?term=03447223&draw=2&rank=1


2019 ◽  
Vol 20 (2) ◽  
pp. 387 ◽  
Author(s):  
Arif Hasan ◽  
Asadur Rahman ◽  
Hiroyuki Kobori

The human gastrointestinal tract is inhabited by many types of microbiota, including bacteria, viruses, and fungi. Dysregulations of their microenvironment are associated with various health problems, not only limited to gastrointestinal disorders, such as inflammatory bowel disease, but to impacts beyond the intestine. For example, intestinal microbiota can affect the liver in non-alcoholic fatty liver disease, visceral adipose tissue during adipogenesis, and the heart in atherosclerosis. The factors contributing to these pathogeneses involve the gut microbiota and the effector organs of the host, and everything in between. The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are pivotal for the modulation of many of the pathogeneses mentioned above. It is, therefore, conceivable that, in the process of host-microbiota interactions, PPARs play important roles. In this review, we focus on the interactions between host PPARs in different organs and gut microbiota and their impacts on maintaining health and various diseases.


Author(s):  
Santanu Das ◽  
Tahila Andrighettti ◽  
João Sabino ◽  
Tamas Korcsmaros ◽  
Mojibur Rohman Khan ◽  
...  

The mammalian gut ecosystem plays critical roles in multiple functions related to health and homeostasis. In many cases, disturbances in the gut ecosystem are associated with a large number of metabolic and chronic diseases and disorders such as diabetes, cancer, and obesity. A diverse community of microorganisms ranging from viruses to bacteria comprise the gut microbiota, which is often considered as an organ in itself. Recent studies have profiled the influence of lifestyles and dietary behavior by comparing the gut microbiome of populations with different cultural underpinnings. In this review, we provide an overview of the studies which report the influence on the gut microbial composition of dietary and lifestyle patterns in different contexts such as western industrialized countries and indigenous cultures (corresponding to different lifestyle gradients such as hunter-gatherers and pastoralists) and how this association may influence health and disease.


2019 ◽  
Vol 36 (4) ◽  
pp. 593-625 ◽  
Author(s):  
Lauren J. Rajakovich ◽  
Emily P. Balskus

Metalloenzymes play central roles in metabolic functions of the human gut microbiota that are associated with host health and disease.


Sign in / Sign up

Export Citation Format

Share Document