scholarly journals Micromeria fruticosa Induces Cell Cycle Arrest and Apoptosis in Breast and Colorectal Cancer Cells

2020 ◽  
Vol 13 (6) ◽  
pp. 115 ◽  
Author(s):  
Waseem El-Huneidi ◽  
Naglaa G. Shehab ◽  
Khuloud Bajbouj ◽  
Arya Vinod ◽  
Ahmed El-Serafi ◽  
...  

Micromeria fruticosa (L.) Druce subsp. serpyllifolia (Lamiaceae) has been used widely in folk medicine to alleviate various ailments such as abdominal pains, diarrhea, colds, eye infections, heart disorders and wounds. A few reports have confirmed different therapeutic potentialities of its extracts, including the anti-inflammatory, gastroprotective, analgesic, antiobesity and antidiabetic activities. This study aimed to investigate the mechanistic pathway of the antiproliferative activity of the ethanolic extract of M. fruticosa on two different cancer cell lines, namely human breast (mammary carcinoma F7 (MCF-7)) and human colorectal (human colon tumor cells (HCT-116)) cell lines. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, Annexin V-FITC/PI, caspases 8/9 and cell cycle analyses, qRT-PCR and Western blot were used to assess the effect of M. fruticosa on cytotoxicity, apoptosis, cell cycle, cell cycle-related genes and protein expression profiles in MCF-7 and HCT-116. The extract inhibits cell proliferation in a time- and dose-dependent manner. The half-maximal inhibitory concentration (IC50) for both cell lines was found to be 100 μg/mL. Apoptosis induction was confirmed by Annexin V-FITC/PI, that was related to caspases 8 and 9 activities induction. Furthermore, the cell cycle analysis revealed arrest at G2/M phase. The underlying mechanism involved in the G2/M arrest was found to be associated with the downregulation of CDK1, cyclin B1 and survivin that was confirmed by qRT-PCR and Western blotting.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


2020 ◽  
Author(s):  
shuyi chen ◽  
Ping Zhu ◽  
Xue Wang ◽  
Youping Jin ◽  
Xiuling Zhi ◽  
...  

Abstract Background: Anlotinib, a multi-target tyrosine kinase inhibitor, has already been indicated to have significant anticancer effects on lung cancer, colon cancer and ovarian cancer in a phase II clinical trial, but its effect on breast cancer (BC) has not been adequately investigated. Methods: The proliferation activity of BC cell lines MCF-7 and MDA-MB-231 with the treatment of anlotinib was tested by Cell Counting Kit-8 (CCK-8) assay and immunocytochemistry (ICC) staining. We investigated the alteration of cell cycle and apoptosis and autophagy level and the underlying mechanism in the cell lines by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), Western blots, ICC and TUNEL staining and flow cytometry. Further, AT-3 cells were subcutaneously injected into C57BL/6 mice, followed by anlotinib intragastrically. The extracted tumours were assessed by qRT-PCR, Western blots and immunohistochemistry.Results: We found that anlotinib suppressed the cell viability and proliferation of MCF-7 and MDA-MB-231 cell lines and tumour growth in BC xenografts in mice, likely due to abnormal cell cycle arrest and induction of autophagy and apoptosis. Then, we further examined the underlying mechanism of anlotinib, and the results indicated that anlotinib induced apoptosis by promoting autophagy in MCF-7 and MDA-MB-231 cells by regulating the Akt/GSK-3α pathway. The analysis of data from patients with BC collected in TCGA revealed that increased VEGFA expression was related to BC.Conclusions: Our study demonstrated that anlotinib inhibited the growth of BC cells via promoting apoptosis through autophagy mediated by Akt/GSK-3α signalling and may be an effective new drug for BC treatment.


2017 ◽  
Vol 41 (4) ◽  
pp. 1519-1531 ◽  
Author(s):  
Beibei Bie ◽  
Jin Sun ◽  
Jun Li ◽  
Ying Guo ◽  
Wei Jiang ◽  
...  

Background/Aims: Baicalein has been shown to possess significant anti-hepatoma activity by inhibiting cell proliferation. Whether the anti-proliferative effect of baicalein is related to its modulation of miRNA expression in hepatocellular carcinoma (HCC) is still unknown. Methods: The anti-proliferative effects of baicalein on HCC cell line Bel-7402 was assessed by detecting the proliferation activity, cell cycle distribution, expression changes of p21/CDKN1A, P27/CDKN1B, total Akt and phosphoryted AKT. Microarray analysis was conducted to determine the miRNA expression profiles in baicalein-treated or untreated Bel-7402 cells and then validated by qRT-PCR in two HCC cell lines (Bel-7402 and Hep3B). The gain-of-function of miR-3127-5p was performed by detecting anti-proliferative effects after transfecting miRNA mimics in cells. Finally, the expression level of miR-3127-5p in different HCC cell lines was determined by qRT-PCR. Results: Baicalein was able to inhibit the proliferation of Bel-7402 cells by inducing cell cycle arrest at the S and G2/M phase via up-regulating the expression of p21/CDKN1A and P27/CDKN1B and suppressing the PI3K/Akt pathway. Baicalein could alter the miRNA expression profiles in Bel-7402 cells. Putative target genes for differentially expressed miRNAs could be enriched in terms of cell proliferation regulation, cell cycle arrest and were mainly involved in MAPK, PI3K-Akt, Wnt, Hippo and mTOR signaling pathways. MiR- 3127-5p, one of up-regulated miRNAs, exhibits low expression level in several HCC cell lines and its overexpression could inhibit cell growth of Bel-7402 and Hep3B cell lines by inducing S phase arrest by up-regulating the expression of p21and P27 and repressing the PI3K/Akt pathway. Conclusions: Modulation of miRNA expression may be an important mechanism underlying the anti-hepatoma effects of baicalein.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Wasitta Rachakhom ◽  
Patompong Khaw-on ◽  
Wilart Pompimon ◽  
Ratana Banjerdpongchai

Dihydrochalcone derivatives are active compounds that have been purified from the Thai medicinal plant Cyathostemma argenteum. The objectives of this study were to investigate the effects of two dihydrochalcone derivatives on human breast cancer MDA-MB-231 and MCF-7 cell proliferation and to study the relevant mechanisms involved. The two dihydrochalcone derivatives are 4′,6′-dihydroxy-2′,4-dimethoxy-5′-(2″-hydroxybenzyl)dihydrochalcone (compound 1) and calomelanone (2′,6′-dihydroxy-4,4′-dimethoxydihydrochalcone, compound 2), both of which induced cytotoxicity toward both cell lines in a dose-dependent manner by using MTT assay. Treatment with both derivatives induced apoptosis as determined by annexin V-FITC/propidium iodide employing flow cytometry. The reduction of mitochondrial transmembrane potential (staining with 3,3′-dihexyloxacarbocyanine iodide, DiOC6, employing a flow cytometer) was established in the compound 1-treated cells. Compound 1 induced caspase-3, caspase-8, and caspase-9 activities in both cell lines, as has been determined by specific colorimetric substrates and a spectrophotometric microplate reader which indicated the involvement of both the extrinsic and intrinsic pathways. Calcium ion levels in mitochondrial and cytosolic compartments increased in compound 1-treated cells as detected by Rhod-2AM and Fluo-3AM intensity, respectively, indicating the involvement of the endoplasmic reticulum (ER) stress pathway. Compound 1 induced cell cycle arrest via enhanced atm and atr expressions and by upregulating proapoptotic proteins, namely, Bim, Bad, and tBid. Moreover, compound 1 significantly inhibited the EGFR/MAPK signaling pathway. In conclusion, compound 1 induced MDA-MB-231 and MCF-7 cell apoptosis via intrinsic, extrinsic, and ER stress pathways, whereas it ameliorated the EGFR/MAPK pathway in the MCF-7 cell line. Consequently, it is believed that compound 1 could be effectively developed for cancer treatments.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4478-4478 ◽  
Author(s):  
Noriyoshi Iriyama ◽  
Hirotsugu Hino ◽  
Shota Moriya ◽  
Masaki Hiramoto ◽  
Yoshihiro Hatta ◽  
...  

Abstract Background:Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow. D-type cyclins (CCNDs), an important family of cell cycle regulators, are thought to be implicated in multiple myeloma (MM) development because CCNDs are commonly expressed in myeloma cells. CCND is known to positively regulate the cell cycle from G1 to S-phase initiation by binding to cyclin-dependent kinase (CDK) 4/6, resulting in potentiation of myeloma cell growth. These findings suggest a possible role for CDK4/6-targeting therapy in MM, yet the details remain incompletely understood. In this regard, we investigated the biological activity of abemaciclib, a potent, highly selective CDK4/6 inhibitor, in myeloma cell lines, to elucidate the mechanisms underlying the involvement of the CCND-CDK4/6 complex in cell cycle regulation and survival. Methods:The effects of abemaciclib on myeloma cells were investigated using three myeloma cell lines, KMS12-PE (CCND1-positive and CCND2-negative), RPMI8226 (CCND1-negative and CCND2-positive), and IM-9 (both CCND1- and CCND2-positive). Cell growth was assessed by trypan blue exclusion assay. Cell cycle analysis was performed using propidium iodide (PI) and apoptosis was measured using annexin V/PI staining via flow cytometry. Cell cycle regulated proteins, including p21 and p27, and phosphorylated proteins, including STAT1, STAT3, ERK, JNK, p38, and AKT, were evaluated using a phospho-flow method. Autophagy was assessed using CYTO-ID via flow cytometry. PARP cleavage was investigated via western blotting. Clarithromycin, an antibiotic agent belonging to the macrolide class, was used as an autophagy inhibitor. Results:Abemaciclib inhibited myeloma cell growth in a dose-dependent manner in all the cell lines evaluated, with significant differences seen at a concentration of 320 nM. Annexin V/PI staining revealed that 1 μM abemaciclib showed little or no effect on apoptosis, but 3.2 μM abemaciclib induced apparent myeloma cell apoptosis, with an increase in both the early and late apoptotic fractions. Therefore, 1 and 3.2 μM of abemaciclib were used in subsequent experiments for the assessment of cell growth and apoptosis, respectively. Cell cycle analyses revealed that 1 μM abemaciclib increased the fraction of cells in G0/G1 phase and decreased the fraction in S-G2/M phase. Furthermore, this effect was associated with the upregulation of p21 and p27 in the evaluated myeloma cells. PARP cleavage was observed in KMS12-PE cells treated with 3.2 μM abemaciclib, but not 1 μM, suggesting a close connection between the degree of PARP cleavage and apoptosis in myeloma cells. Importantly, abemaciclib induced autophagy in a dose-dependent manner. However, no apparent inhibitory effect on the autophagy-related phosphorylated proteins STAT1 (Y701), STAT3 (Y705), ERK (T202/Y204), JNK (T183/Y185), p38 (T180/Y182), or AKT (Y315) was observed in myeloma cells treated with 3.2 μM abemaciclib. To investigate the role of abemaciclib-induced autophagy on myeloma cell apoptosis, we further assessed the apoptotic effect of 3.2 μM abemaciclib or 50 μg/mL clarithromycin, alone or in combination. Clarithromycin did not induce apoptosis of myeloma cells. Importantly, clarithromycin treatment in combination with abemaciclib attenuated the apoptotic effect of abemaciclib. Discussion & Conclusions: Although the underlying mechanisms conferring the level of CCND expression are known to differ greatly (e.g., CCND translocation, hyperdiploidy, or activation of upstream pathways of CCND transcription), the results of the current study indicate that the CCND-CDK4/6 complex is closely involved in myeloma cell growth and survival regardless of the CCND family member present. In addition, we demonstrate that abemaciclib exerts multiple effects, such as myeloma cell apoptosis, via the PARP pathway or autophagy, as well as cell cycle regulation. Because abemaciclib in combination with clarithromycin inhibits myeloma cell apoptosis, the autophagy induced by abemaciclib is considered to have a critical role in the induction of apoptosis, so-called "autophagic cell death." These results provide novel insights into a possible therapeutic approach using abemaciclib to target CDK4/6 in patients with MM, and offer new possibilities for combination therapy with CDK4/6 inhibitors and autophagy regulators. Disclosures Iriyama: Novartis: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau. Hatta:Novartis Pharma: Honoraria.


2020 ◽  
Author(s):  
Shuyi Chen ◽  
ping zhu ◽  
xue wang ◽  
youping jin ◽  
xiuling zhi ◽  
...  

Abstract Background: Anlotinib, a multi-target tyrosine kinase inhibitor, has already been indicated to have significant anticancer effects on lung cancer, colon cancer and ovarian cancer in a phase II clinical trial, but its effect on breast cancer (BC) has not been adequately investigated. Methods: The proliferation activity of BC cell lines MCF-7 and MDA-MB-231 with the treatment of anlotinib was tested by Cell Counting Kit-8 (CCK-8) assay and immunocytochemistry (ICC) staining. We investigated the alteration of cell cycle and apoptosis and autophagy level and the underlying mechanism in the cell lines by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), Western blots, ICC and TUNEL staining and flow cytometry. Further, AT-3 cells were subcutaneously injected into C57BL/6 mice, followed by anlotinib intragastrically. The extracted tumours were assessed by qRT-PCR, Western blots and immunohistochemistry.Results: We found that anlotinib suppressed the cell viability and proliferation of MCF-7 and MDA-MB-231 cell lines and tumour growth in BC xenografts in mice, likely due to abnormal cell cycle arrest and induction of autophagy and apoptosis. Then, we further examined the underlying mechanism of anlotinib, and the results indicated that anlotinib induced apoptosis by promoting autophagy in MCF-7 and MDA-MB-231 cells by regulating the Akt/GSK-3α pathway. The analysis of data from patients with BC collected in TCGA revealed that increased VEGFA expression was related to BC.Conclusions: Our study demonstrated that anlotinib inhibited the growth of BC cells via promoting apoptosis through autophagy mediated by Akt/GSK-3α signalling and may be an effective new drug for BC treatment.


2020 ◽  
Author(s):  
Shuyi Chen ◽  
Ping Zhu ◽  
Xue Wang ◽  
Youping Jin ◽  
Xiuling Zhi ◽  
...  

Abstract Background: Anlotinib, a multi-target tyrosine kinase inhibitor, has already been indicated to have significant anticancer effects on lung cancer, colon cancer and ovarian cancer in a phase II clinical trial, but its effect on breast cancer (BC) has not been adequately investigated. Methods: The proliferation activity of BC cell lines MCF-7 and MDA-MB-231 with the treatment of anlotinib was tested by Cell Counting Kit-8 (CCK-8) assay and immunocytochemistry (ICC) staining. We investigated the alteration of cell cycle and apoptosis and autophagy level and the underlying mechanism in the cell lines by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), Western blots, ICC and TUNEL staining and flow cytometry. Further, AT-3 cells were subcutaneously injected into C57BL/6 mice, followed by anlotinib intragastrically. The extracted tumours were assessed by qRT-PCR, Western blots and immunohistochemistry.Results: We found that anlotinib suppressed the cell viability and proliferation of MCF-7 and MDA-MB-231 cell lines and tumour growth in BC xenografts in mice, likely due to abnormal cell cycle arrest and induction of autophagy and apoptosis. Then, we further examined the underlying mechanism of anlotinib, and the results indicated that anlotinib induced apoptosis by promoting autophagy in MCF-7 and MDA-MB-231 cells by regulating the Akt/GSK-3α pathway. The analysis of data from patients with BC collected in TCGA revealed that increased VEGFA expression was related to BC.Conclusions: Our study demonstrated that anlotinib inhibited the growth of BC cells via promoting apoptosis through autophagy mediated by Akt/GSK-3α signalling and may be an effective new drug for BC treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Mario Augusto Bolaños-Carrillo ◽  
Jose Luis Ventura-Gallegos ◽  
Arturo David Saldivar-Jiménez ◽  
Alejandro Zentella-Dehesa ◽  
Mariano Martínez-Vázquez

Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage.Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM) during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage.Results. Peniocerol and macdougallin induced growth inhibition and apoptosisin vitroin a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours.Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated fromMyrtillocactus geometrizansdevelop their biological activities against cancer cells.


Author(s):  
Gyeong-Ji Kim ◽  
Hyeon-Ju Jo ◽  
Kang-Hyun Chung ◽  
Kwon-Jai Lee ◽  
Jeung Hee An

We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), and U87 (human glioblastoma) cells. The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA (at 100 µg/mL) increased the number of apoptotic cells to 27.0% in DU145, 27.0% in MCF-7, and 15.7% in U87 cells, when compared to control cells. This enhanced apoptosis was due to increases in p53, cytochrome c, and Bax expression. OA-treated DU145 cells were arrested in G2 because of the activation of p-ERK and p21, and the decrease in cyclin B1 and cyclin E expression. Furthermore, OA-treated MCF-7 cells were arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27, and the decrease in p-AKT, cyclin E, and CDK2. U87 cells also exhibited G1 phase arrest caused by the increase in p-ERK, p-JNK, p21, and p27, and the decrease in CDK2. Thus, OA arrests the cell cycle in different phases, and increases apoptosis in cancer cells. These results suggest that OA may alter the expression of cell cycle regulatory proteins in a cancer type-dependent manner.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3120-3120 ◽  
Author(s):  
Miao Wang ◽  
P.M. Kluin ◽  
Stefano Rosati ◽  
Marjan Luinge ◽  
Simon M. G. J. Daenen ◽  
...  

Abstract Introduction: The serine threonine kinase Raf-1 plays a protective role in many cell types, but its expression and function in CLL cells has not been studied in detail. In the present study, we analyzed Raf-1 expression and tested the hypothesis that Raf-1 is critical for CLL cell survival. Materials and Methods: By using qRT-PCR and western blot, we compared the expression of Raf-1 of mRNA and protein levels in purified B cells from 45 CLL cases and CD38 negative B cells from 5 reactive tonsils. By western blot, we analyzed the activity of phospho-Raf-1 (ser338) and its downstream targets (phospho-ERK1/2, phospho-BAD) in 23 CLL cases and 4 CLL cell lines (JVM-3, MEC-1, MEC-2 and MO1043) before and after IgM stimulation. By immunoprecipitation, we analyzed if Raf-1 co-localizes with Bcl-2. We correlated the change in phosphorylation status (Raf-1, ERK and BAD) in response to IgM stimulation with the ZAP-70/SYK mRNA ratio, which was detected by qRT-PCR in purified B cells from CLL cases. After using specific inhibitors, including the Raf-1 inhibitor GW5074, the Raf-1 destabilizer Geldanamycin and Bcl-2 inhibitor YC137, we investigated apoptosis by Annexin V flowcytometry in CLL cases and CLL cell lines as well as cell cycle changes in the 4 cell lines by flowcytometry. Results: In comparison to normal resting (CD38 negative) B cells, there was a strongoverexpression of Raf-1 in CLL cells, both at at the mRNA and protein level. Using qRT-PCR there was an almost linear correlation between Raf-1 and Bcl-2 expression. Moreover, the phosphorylation status of Raf-1 and ERK in response to IgM stimulation strongly correlated with the ZAP-70/SYK mRNA ratio. Using immunoprecipitation and confocal miscroscopy we found colocalization of Raf-1 with Bcl-2, which might account for the observed constitutive activation of BAD in CLL cells. The Raf-1 inhibitor GW5074, Raf-1 destabilizer Geldanamycin and Bcl-2 inhibitor YC137 all led to p-Raf-1 inhibition as well as downregulation of p-ERK and p-BAD. Additionally, all three inhibitors downregulated cyclin D3 and cyclin E, which are important for G0/G1 transition. We also found that GW5074 induced apoptosis in CLL cell lines and primary cells of CLL cases. Conclusion/Discussion: In conclusion, our study identifies Raf-1 as a critical anti-apoptotic and cell cycle regulating kinase in CLL cells.


Sign in / Sign up

Export Citation Format

Share Document