scholarly journals Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice

2021 ◽  
Vol 14 (6) ◽  
pp. 510
Author(s):  
Ana Reis-Mendes ◽  
José Luís Dores-Sousa ◽  
Ana Isabel Padrão ◽  
Margarida Duarte-Araújo ◽  
José Alberto Duarte ◽  
...  

Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe, namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover, MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α), while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.

2001 ◽  
Vol 21 (15) ◽  
pp. 4856-4867 ◽  
Author(s):  
Okot Nyormoi ◽  
Zhi Wang ◽  
Dao Doan ◽  
Maribelis Ruiz ◽  
David McConkey ◽  
...  

ABSTRACT Several reports have linked activating protein 2α (AP-2α) to apoptosis, leading us to hypothesize that AP-2α is a substrate for caspases. We tested this hypothesis by examining the effects of tumor necrosis factor alpha (TNF-α) on the expression of AP-2 in breast cancer cells. Here, we provide evidence that TNF-α downregulates AP-2α and AP-2γ expression posttranscriptionally during TNF-α-induced apoptosis. Both a general caspase antagonist (zVADfmk) and a caspase 6-preferred antagonist (zVEIDfmk) inhibited TNF-α-induced apoptosis and AP-2α downregulation. In vivo tests showed that AP-2α was cleaved by caspases ahead of the DNA fragmentation phase of apoptosis. Recombinant caspase 6 cleaved AP-2α preferentially, although caspases 1 and 3 also cleaved it, albeit at 50-fold or higher concentrations. Activated caspase 6 was detected in TNF-α-treated cells, thus confirming its involvement in AP-2α cleavage. All three caspases cleaved AP-2α at asp19 of the sequence asp-arg-his-asp (DRHD19). Mutating D19 to A19abrogated AP-2α cleavage by all three caspases. TNF-α-induced cleavage of AP-2α in vivo led to AP-2α degradation and loss of DNA-binding activity, both of which were prevented by pretreatment with zVEIDfmk. AP-2α degradation but not cleavage was inhibited in vivo by PS-431 (a proteasome antagonist), suggesting that AP-2α is degraded subsequent to cleavage by caspase 6 or caspase 6-like enzymes. Cells transfected with green fluorescent protein-tagged mutant AP-2α are resistant to TNF-α-induced apoptosis, further demonstrating the link between caspase-mediated cleavage of AP-2α and apoptosis. This is the first report to demonstrate that degradation of AP-2α is a critical event in TNF-α-induced apoptosis. Since the DRHD sequence in vertebrate AP-2 is widely conserved, its cleavage by caspases may represent an important mechanism for regulating cell survival, proliferation, differentiation, and apoptosis.


2001 ◽  
Vol 195 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Mauritius Menges ◽  
Susanne Rößner ◽  
Constanze Voigtländer ◽  
Heike Schindler ◽  
Nicole A. Kukutsch ◽  
...  

Mature dendritic cells (DCs) are believed to induce T cell immunity, whereas immature DCs induce T cell tolerance. Here we describe that injections of DCs matured with tumor necrosis factor (TNF)-α (TNF/DCs) induce antigen-specific protection from experimental autoimmune encephalomyelitis (EAE) in mice. Maturation by TNF-α induced high levels of major histocompatibility complex class II and costimulatory molecules on DCs, but they remained weak producers of proinflammatory cytokines. One injection of such TNF/DCs pulsed with auto-antigenic peptide ameliorated the disease score of EAE. This could not be observed with immature DCs or DCs matured with lipopolysaccharide (LPS) plus anti-CD40. Three consecutive injections of peptide-pulsed TNF/DCs derived from wild-type led to the induction of peptide-specific predominantly interleukin (IL)-10–producing CD4+ T cells and complete protection from EAE. Blocking of IL-10 in vivo could only partially restore the susceptibility to EAE, suggesting an important but not exclusive role of IL-10 for EAE prevention. Notably, the protection was peptide specific, as TNF/DCs pulsed with unrelated peptide could not prevent EAE. In conclusion, this study describes that stimulation by TNF-α results in incompletely matured DCs (semi-mature DCs) which induce peptide-specific IL-10–producing T cells in vivo and prevent EAE.


1999 ◽  
Vol 276 (2) ◽  
pp. H671-H678 ◽  
Author(s):  
David W. A. Beno ◽  
Robert E. Kimura

Previous investigators have demonstrated that the tumor necrosis factor-α (TNF-α) response to endotoxin is inhibited by exogenous corticosterone or catecholamines both in vitro and in vivo, whereas others have reported that surgical and nonsurgical stress increase the endogenous concentrations of these stress-induced hormones. We hypothesized that elevated endogenous stress hormones resultant from experimental protocols attenuated the endotoxin-induced TNF-α response. We used a chronically catheterized rat model to demonstrate that the endotoxin-induced TNF-α response is 10- to 50-fold greater in nonstressed (NS) rats compared with either surgical-stressed (SS, laparotomy) or nonsurgical-stressed (NSS, tail vein injection) models. Compared with the NS group, the SS and NSS groups demonstrated significantly lower mean peak TNF-α responses at 2 mg/kg and 6 μg/kg endotoxin [NS 111.8 ± 6.5 ng/ml and 64.3 ± 5.9 ng/ml, respectively, vs. SS 3.9 ± 1.1 ng/ml ( P < 0.01) and 1.3 ± 0.5 ng/ml ( P < 0.01) or NSS 5.2 ± 3.2 ng/ml ( P < 0.01) at 6 μg/kg]. Similarly, baseline concentrations of corticosterone and catecholamines were significantly lower in the NSS group [84.5 ± 16.5 ng/ml and 199.8 ± 26.2 pg/ml, respectively, vs. SS group 257.2 ± 35.7 ng/ml ( P< 0.01) and 467.5 ± 52.2 pg/ml ( P < 0.01) or NS group 168.6 ± 14.4 ng/ml ( P < 0.01) and 1,109.9 ± 140.7 pg/ml ( P < 0.01)]. These findings suggest that the surgical and nonsurgical stress inherent in experimental protocols increases baseline stress hormones, masking the endotoxin-induced TNF-α response. Subsequent studies of endotoxic shock should control for the effects of protocol-induced stress and should measure and report baseline concentrations of corticosterone and catecholamines.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 443 ◽  
Author(s):  
Sumbal Iqbal ◽  
Fawad Ali Shah ◽  
Komal Naeem ◽  
Humaira Nadeem ◽  
Sadia Sarwar ◽  
...  

Oxidative stress-mediated neuroinflammatory events are the hallmark of neurodegenerative diseases. The current study aimed to synthesize a series of novel succinamide derivatives and to further investigate the neuroprotective potential of these compounds against scopolamine-induced neuronal injury by in silico, morphological, and biochemical approaches. The characterization of all the succinamide derivatives was carried out spectroscopically via proton NMR (1H-NMR), FTIR and elemental analysis. Further in vivo experiments showed that scopolamine induced neuronal injury, characterized by downregulated glutathione (GSH), glutathione S-transferase (GST), catalase, and upregulated lipid peroxidation (LPO). Moreover, scopolamine increased the expression of inflammatory mediators such as cyclooxygenase2 (COX2), nuclear factor kappa B (NF-kB), tumor necrosis factor (TNF-α), further associated with cognitive impairment. On the other hand, treatment with succinamide derivatives ameliorated the biochemical and immunohistochemical alterations induced by scopolamine, further supported by the results obtained from molecular docking and binding affinities.


2013 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Ted H. Elsasser ◽  
Stanislaw Kahl ◽  
Katie M. Lebold ◽  
Maret G. Traber ◽  
Jessica Shaffer ◽  
...  

While vitamin E has been used for decades in cattle diets, the principle form used traditionally is the synthetic α-isoform acetate or succinate and largely no data exist on the biological partitioning or functionality of the major naturally occurring γ- and δ-isoforms in cattle. Using tyrosine 3’-nitrated protein (pNT) as a biomarker of nitrosative cell stress, we sought to evaluate the effectiveness of short-term feeding supplementation of high content natural α-tocopherol (<em>α-T</em>, 96% α-isomer) compared to high content γ- and δ-enriched low α-content mixed tocopherol oils (<em>γ-T</em>, ~70% <em>γ-</em>, 20% δ-, &lt;5% α-isoform) to mitigate systemic and hepatic aspects of the proinflammatory response to endotoxin (LPS). Calves fed diets supplemented with <em>α-T</em>, <em>γ-T</em> for five days or no tocopherol supplement (<em>T0E</em>) were challenged with a low-level of LPS (0.25 μg/kg, iv, <em>E. coli </em>055:B5) sufficient to effect a liver nitration response. As fed,<em> α-T</em> or <em>γ-T</em> increased plasma and liver content of the respective tocopherols reflecting their relative abundance in the respective diets. Plasma or tissue mediators and biomarkers of the proinflammatory response [plasma concentrations of tumor necrosis factor-α (TNF-α, P&lt;0.001), nitrate+nitrite (NOx, P&lt;0.01), and serum amyloid A (SAA, P&lt;0.001)], and general liver content of pNT (P&lt;0.005) increased after LPS. LPS-mediated increases in TNF-α were not dif- ferent between diet treatments; both plasma NOx (P&lt;0.05) and generalized liver pNT (P&lt;0.03) responses were attenuated significantly in <em>α-T </em>and <em>γ-T versus T0E calves</em>. Plasma SAA was significantly decreased in γ-T calves at 24 h post-LPS relative to responses in <em>α-T</em> or <em>T0E </em>calves. The nitration of the mitochondrial proteins 24 h post-LPS was not only attenuated in <em>α-T</em> and <em>γ-T vs T0E</em>, but also the mitigating effect of <em>γ-T</em> on these specific nitration events was greater than that of <em>α-T </em>(P&lt;0.01). Results are consistent with the concept that short-term <em>α-T</em> or <em>γ-T</em> supplementation can effectively decrease proinflammatory liver pNT after LPS; some mitochondrial nitration targets may be better protected with prophylactic supplementation with γ-,δ-tocopherol enriched oil.


2004 ◽  
Vol 287 (4) ◽  
pp. R759-R766 ◽  
Author(s):  
Marie-Eve Fortier ◽  
Stephen Kent ◽  
Helen Ashdown ◽  
Stephen Poole ◽  
Patricia Boksa ◽  
...  

Polyinosinic:polycytidylic acid (poly I:C) is a synthetic double-stranded RNA that is used experimentally to model viral infections in vivo. Previous studies investigating the inflammatory properties of this agent in rodents demonstrated that it is a potent pyrogen. However, the mechanisms underlying this response have not been fully elucidated. In the current study, we examined the effects of peripheral administration of poly I:C on body temperature and cytokine production. Male rats were implanted with biotelemetry devices and randomly assigned to one of the following three groups: poly I:C + saline, poly I:C + interleukin-1 receptor antagonist (IL-1ra), or saline + saline. Maximal fever of 1.6°C above baseline was observed 3 h after an intraperitoneal injection of poly I:C (750 μg/kg). Pretreatment with IL-1ra diminished this response by >50% (maximum body temperature = 0.6°C above baseline). Plasma IL-6 concentration increased fivefold 2 h post-poly I:C compared with saline-injected rats; levels returned to baseline 4 h postinjection. Pretreatment with IL-1ra prevented this rise in IL-6. Plasma tumor necrosis factor (TNF)-α was also increased more than fourfold 2 h postinjection but remained unaffected by IL-1ra treatment. IL-1β and cyclooxygenase-2 mRNA were significantly upregulated in the hypothalamus of poly I:C-treated animals. Finally, poly I:C decreased food intake by 30%, but this response was not altered by pretreatment with IL-1ra. These results suggest that poly I:C induces fever, but not anorexia, through an IL-1 and prostaglandin-dependent mechanism.


2013 ◽  
Vol 1569 ◽  
pp. 9-14 ◽  
Author(s):  
Konstanze K. Julich-Gruner ◽  
Toralf Roch ◽  
Nan Ma ◽  
Axel T. Neffe ◽  
Andreas Lendlein

ABSTRACTBiomaterials require thorough in vitro testing before being applied in vivo. Unwanted contaminations of biomaterials but also their intrinsic properties can cause uncontrolled immune response leading to severe consequences for the patient. Therefore, immunological evaluation of materials for biomedical applications is mandatory before entering clinical application. In order to introduce physical netpoints, the aromatic compounds desaminotyrosine (DAT) and desaminotyrosyl-tyrosine (DATT) were successfully used to functionalize linear and star-shaped oligoethylene glycol (lOEG and sOEG) as previously described. The materials showed properties of surfactants and have potential to be used for solubilization of lipophilic drugs in water. Furthermore, the materials are susceptible for H2O2 degradation as determined by MALDI-ToF MS analyses. This is important for potential in vivo applications, as macrophages can release reactive oxygen species (ROS) under inflammatory conditions. As it is known that surfactant solutions of high concentration can lead to cell lysis, the effects of OEG-DAT(T) solutions on murine RAW macrophages were investigated. Even at highest OEG-DAT(T) concentration of 1000 µg·mL-1 the viability of the RAW cells was not significantly impaired. Additionally, the polymers were incubated with whole human blood and the production of inflammatory cytokines such as the tumor necrosis factor (TNF)-α and interleukin (IL)-6 was determined. Only at high concentrations, the OEG-DAT(T) solution induced low levels of TNF-α and IL-6, indicating that a mild inflammatory reaction could be expected when such high OEG-DAT(T) concentrations are applied in vivo. Similarly, the OEG-DAT(T) solution did not induce ROS in monocytes and neutrophils after incubation with whole human blood. Conclusively, the data presented here demonstrate that OEG-DAT(T) do not lead to a substantial activation of the innate immune mechanisms and could therefore be investigated for solubilizing pharmaceutical agents.


1992 ◽  
Vol 1 (5) ◽  
pp. 347-353 ◽  
Author(s):  
Andrew C. Issekutz ◽  
Nancy Lopes ◽  
Thomas B. Issekutz

The cytokines IL-1 and TNF-α are involved in inflammation and their production is stimulated by various agents, especially endotoxin (LPS). Here, using the human IL-1 receptor antagonist (IL-1RA) and a new monoclonal antibody (mAb 7F11) to rabbit TNF, the role of endogenous IL-l and TNF production in acute (3h) leukocyte (PMNL) recruitment to dermal inflammation in rabbits has been studied. IL-1RA inhibited by 27% the PMNL accumulation in reactions induced by killed Escherichia coli (p < 0.05) but not by LPS. The monoclonal antibody to TNF inhibited by 27% and 38% (p < 0.002) the PMNL accumulation in LPS and E. coli reactions respectively, but a combination of the mAb with IL-1RA was not more effective. Treatment of human umbilical vein endothelium with LPS for 3 h activated endothelium to induce PMNL transendothelial migration in vitro, which was not inhibited by IL-1RA, antibody to TNF-α, IL-1 or to IL-8. In conclusion, TNF and IL-1 may partially mediate acute PMNL infiltration in vivo to LPS and Gram negative bacteria, but there is a major IL-1/TNF independent mechanism, at least in dermal inflammation, which may be due to direct LPS activation of the microvasculature or perhaps the generation of cytokines other than IL-1 and TNF.


2001 ◽  
Vol 195 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jesus Colino ◽  
Yi Shen ◽  
Clifford M. Snapper

Immature bone marrow–derived myeloid dendritic cells (BMDCs) are induced to undergo phenotypic maturation and secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12, and IL-10 when pulsed in vitro with intact Streptococcus pneumoniae. After transfer to naive mice, pulsed BMDCs induce immunoglobulin (Ig) isotype responses specific for both protein and polysaccharide pneumococcal antigens, having in common the requirement for viable BMDCs, T cells, and B7-dependent costimulation in the recipient mice. Whereas primary Ig isotype responses to bacterial proteins uniformly require BMDC expression of major histocompatibility complex class II, CD40, and B7, and the secretion of IL-6, but not IL-12, similar requirements for antipolysaccharide Ig responses were only observed for the IgG1 isotype.


Sign in / Sign up

Export Citation Format

Share Document