scholarly journals Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient

2021 ◽  
Vol 14 (9) ◽  
pp. 913
Author(s):  
Maria Antónia Nunes ◽  
Josman Dantas Palmeira ◽  
Diana Melo ◽  
Susana Machado ◽  
Joana Correia Lobo ◽  
...  

Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant profiles, as well as the antimicrobial activity against S. aureus, E. coli and C. albicans, were investigated for the first time. The amount of phenolics ranged between 3.1 and 3.8 g gallic acid eq./100 g in all samples and flavonoids between 2.0 and 3.2 g catechin eq/100 g. No significant differences were found regarding the antioxidant activity. The total fat varied between 5 and 11%, α-tocopherol being the major vitamer and oleic acid the main fatty acid. The protein and ash contents were 1–4% and 10–17%, respectively. The functional ingredient with a higher hydroxytyrosol content (220 mg/100 g) also presented the best minimal inhibitory concentration against the tested bacteria. No activity against C. albicans was verified. This new functional ingredient presents the potential to be used as a natural preservative or as a nutritional profile enhancer. Moreover, it can be an advantageous ingredient in food products, since it comprises specific lipid and hydrophilic bioactive compounds usually not present in other plant extracts.

Author(s):  
M. V. Sycheva ◽  
A. S. Vasilchenko ◽  
E. A. Rogozhin ◽  
T. M. Pashkova ◽  
L. P. Popova ◽  
...  

Aim. Isolation and study ofbiological activity of antimicrobial peptides from chickens thrombocytes. Materials and methods. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect - by using fluorescent spectroscopy method with DNA-tropic dyes. Results. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. Conclusion. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.


2013 ◽  
Vol 66 (9) ◽  
pp. 1065 ◽  
Author(s):  
Mallesh Pandrala ◽  
Fangfei Li ◽  
Lynne Wallace ◽  
Peter J. Steel ◽  
Barry Moore II ◽  
...  

A convenient synthetic strategy is reported for the series of complexes [Ir(pp)3]3+ (where pp = phen, Me2phen and Me4phen) through the intermediacy of the appropriate [Ir(pp)2(CF3SO3)2]+ species. In the case of [Ir(phen)3]3+, the cation was resolved into its enantiomeric forms, for which the absolute configurations were determined by X-ray diffraction. The availability for the first time of the CD spectra allowed comparison with computed CD spectra. Measurement of the antimicrobial activity of the [Ir(pp)3]3+ species {and the [Ir(pp)2X2]+ (X = Cl–, CF3SO3–) precursors involved in their synthesis}, as well as cell uptake studies with the four bacterial strains S. aureus, methicillin-resistant S. aureus (MRSA), E. coli, and P. aeruginosa, indicated that they showed little activity compared with their Ru(ii) analogues. The results suggest that it is unfavourable for an individual metal centre with a 3+ charge to pass across the bacterial cell membrane.


Planta Medica ◽  
2020 ◽  
Vol 86 (15) ◽  
pp. 1089-1096
Author(s):  
Karmen Kapp ◽  
Anne Orav ◽  
Mati Roasto ◽  
Ain Raal ◽  
Tõnu Püssa ◽  
...  

AbstractMint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcussonʼs type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 – 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (−)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (−)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E. coli and 8 extracts against S. aureus. Their summary antimicrobial activity was not always in concordance with the activities of respective reference substances.


2010 ◽  
Vol 2 (2) ◽  
pp. 397-402 ◽  
Author(s):  
R. Badoni ◽  
D. K. Semwal ◽  
U. Rawat

Methyl esters of fatty acid obtained from Celtis australis fruits were subjected to GC-MS in order to determine the identity and concentration of its constituents. Methyl oleate (25.7%), methyl palmitate (22.2%), methyl tricosanoate (13.3%), methyl lineolate (7.8%), methyl dotriacentanoate (2.6%) and methyl 14-acetylhydroxypalmitate (2.1%) were the major constituents out of total characterized composition (95.455%) of fatty acid. The ethanolic extract of fruits was used for evaluating its antimicrobial activity against Staphylococcus aureus, Pseudomonas auroginosa, Escherichia coli and Bacillus subtilis. The extract showed significant results against P. auroginosa and E. coli.  The antimicrobial activity and fatty acid analysis of C. australis of fatty acid fruits has been carried out for the first time. Keywords: Celtis australis; Ulmaceae; methyl oleate; methyl tricosanoate; Pseudomonas auroginosa; Escherichia coli. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.4056                J. Sci. Res. 2 (2), 397-402 (2010) 


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
M Niculae ◽  
CD Sandru ◽  
E Pall ◽  
S Popescu ◽  
L Stan ◽  
...  

Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Sign in / Sign up

Export Citation Format

Share Document