scholarly journals Pharmacological Activity of Garcinia indica (Kokum): An Updated Review

2021 ◽  
Vol 14 (12) ◽  
pp. 1338
Author(s):  
Sung Ho Lim ◽  
Ho Seon Lee ◽  
Chang Hoon Lee ◽  
Chang-Ik Choi

Garcinia indica (commonly known as kokum), belonging to the Clusiaceae family (mangosteen family), is a tropical evergreen tree distributed in certain regions of India. It has been used in culinary and industrial applications for a variety of purposes, including acidulant in curries, pickles, health drinks, wine, and butter. In particular, G. indica has been used in traditional medicine to treat inflammation, dermatitis, and diarrhea, and to promote digestion. According to several studies, various phytochemicals such as garcinol, hydroxycitric acid (HCA), cyanidin-3-sambubioside, and cyanidin-3-glucoside were isolated from G. indica, and their pharmacological activities were published. This review highlights recent updates on the various pharmacological activities of G. indica. These studies reported that G. indica has antioxidant, anti-obesity, anti-arthritic, anti-inflammatory, antibacterial, hepatoprotective, cardioprotective, antidepressant and anxiolytic effects both in vitro and in vivo. These findings, together with previously published reports of pharmacological activity of various components isolated from G. indica, suggest its potential as a promising therapeutic agent to prevent various diseases.

2020 ◽  
Vol 11 (3) ◽  
pp. 4760-4766
Author(s):  
Hartati R ◽  
Suarantika F ◽  
Fidrianny I

Ananas comosus L. Merr, known as pineapple, belongs to the Bromeliaceae family. This plant has been used as traditional medicine and continues until now in conventional herbal medicine. The pineapple was distributed in some countries such as China, India, Indonesia, Malaysia, Thailand and originated from South America. This article delved the scientific work about Ananas comosus focussing their usage as traditional medicine, chemical compounds and biological activities. All of the pieces of information were obtained from the scientific literature such as Science Direct, Google Scholar, Scopus and PubMed. Based on the literature survey,different parts of pineapple (Ananas comosus) are used in traditional medicine, used asan anti-inflammatory agent,anti-oedema, digestive disorder, antimicrobial, vermicide, and purgative. Phytochemical compounds from A. comosus have been provided, including ascorbic acid, quercetin, flavones-3-ol, flavones, and ferulic acid. The crude extracts of A. comosus have many pharmacological activities such as anti-fungal, anti-inflammatory, antioxidant, antibacterial. This discovery becomes possible due to scientific isolation and in vivo or in vitro analysis of A.comosus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoo Saito ◽  
Kohei Nishitani ◽  
Hanako O. Ikeda ◽  
Shigeo Yoshida ◽  
Sachiko Iwai ◽  
...  

AbstractPost-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Chengcheng Shi ◽  
Huapeng Zhang ◽  
Penglei Wang ◽  
Kai Wang ◽  
Denghui Xu ◽  
...  

Abstract Targeting oncogenic proteins for degradation using proteolysis-targeting chimera (PROTAC) recently has drawn increasing attention in the field of cancer research. Bromodomain and extra-terminal (BET) family proteins are newly identified cancer-related epigenetic regulators, which have a role in the pathogenesis and progression of osteosarcoma. In this study, we investigated the in vitro and in vivo anti-osteosarcoma activity by targeting BET with a PROTAC molecule BETd-260. The results showed that BETd-260 completely depletes BET proteins and potently suppresses cell viability in MNNG/HOS, Saos-2, MG-63, and SJSA-1 osteosarcoma cell lines. Compared with BET inhibitors HJB-97 and JQ1, the activity of BETd-260 increased over 1000 times. Moreover, BETd-260 substantially inhibited the expression of anti-apoptotic Mcl-1, Bcl-xl while increased the expression of pro-apoptotic Noxa, which resulted in massive apoptosis in osteosarcoma cells within hours. In addition, pro-oncogenic protein c-Myc also was substantially inhibited by BETd-260 in the OS cells. Of note, BETd-260 induced degradation of BET proteins, triggered apoptosis in xenograft osteosarcoma tumor tissue, and profoundly inhibited the growth of cell-derived and patient-derived osteosarcoma xenografts in mice. Our findings indicate that BET PROTACs represent a promising therapeutic agent for human osteosarcoma.


Author(s):  
S. Seyedmousavi ◽  
Y. C. Chang ◽  
J. H. Youn ◽  
D. Law ◽  
M. Birch ◽  
...  

Clinically relevant members of the Scedosporium / Pseudallescheria species complex and Lomentospora prolificans are generally resistant against currently available systemic antifungal agents in vitro and the infection due to these species is difficult to treat. We studied the in vivo efficacy of a new fungicidal agent olorofim (formerly F901318) against scedosporiosis and lomentosporiosis in neutropenic animals. Cyclophosphamide immunosuppressed CD-1 mice infected by Scedosporium apiospermum , Pseudallescheria boydii ( Scedosporium boydii ) and Lomentospora prolificans were treated by intraperitoneal administration of olorofim (15 mg/kg every 8 h for 9 days). The efficacy of olorofim treatment was assessed by the survival rate at 10 days post infection, levels of serum (1-3)-β-d-glucan (BG), histopathology, and fungal burden of kidneys 3 days post infection. Olorofim therapy significantly improved survival compared to the untreated controls; 80%, 100% and 100% of treated mice survived infection by Scedosporium apiospermum , Pseudallescheria boydii , and Lomentospora prolificans, respectively while less than 20% of the control mice (PBS-treated) survived at 10 days post infection. In the olorofim-treated neutropenic CD-1 mice infected with all three species, serum BG levels were significantly suppressed and fungal DNA detected in the target organs was significantly lower than controls. Furthermore, histopathology of kidneys revealed no or only few lesions with hyphal elements in the olorofim-treated mice, while numerous fungal hyphae were present in control mice. These results indicate olorofim to be a promising therapeutic agent for systemic scedosporiosis/lomentosporiosis, a devastating emerging fungal infection difficult to treat with currently available antifungals.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1454
Author(s):  
Young-Kyung Jung ◽  
Dongyun Shin

Imperata cylindrica is a medicinal plant native to southwestern Asia and the tropical and subtropical zones. To date, 72 chemical constituents have been isolated and identified from I. cylindrica Among these compounds, saponins, flavonoids, phenols, and glycosides are the major constituents. Investigations of pharmacological activities of I. cylindrica revealed that this edible medicinal herb exhibits a wide range of therapeutic potential including immunomodulatory, antibacterial, antitumor, anti-inflammatory, and liver protection activities both in vivo and in vitro. The purpose of this review is to provide an overview of I. cylindrica studies until 2019. This article also intends to review advances in the botanical, phytochemical, and pharmacological studies and industrial applications of I. cylindrica, which will provide a useful bibliography for further investigations and applications of I. cylindrica in medicines and foods.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5849
Author(s):  
Reny Rosalina ◽  
Natthida Weerapreeyakul

Sesame seeds are rich in lignan content and have been well-known for their health benefits. Unlike the other sesame lignan compounds (i.e., sesamin and sesamol), the study of the pharmacological activity of sesamolin has not been explored widely. This review, therefore, summarizes the information related to sesamolin’s pharmacological activities, and the mechanism of action. Moreover, the influence of its physicochemical properties on pharmacological activity is also discussed. Sesamolin possessed neuroprotective activity against hypoxia-induced reactive oxygen species (ROS) and oxidative stress in neuron cells by reducing the ROS and inhibiting apoptosis. In skin cancer, sesamolin exhibited antimelanogenesis by affecting the expression of the melanogenic enzymes. The anticancer activity of sesamolin based on antiproliferation and inhibition of migration was demonstrated in human colon cancer cells. In addition, treatment with sesamolin could stimulate immune cells to enhance the cytolytic activity to kill Burkitt’s lymphoma cells. However, the toxicity and safety of sesamolin have not been reported. And there is also less information on the experimental study in vivo. The limited aqueous solubility of sesamolin becomes the main problem, which affects its pharmacological activity in the in vitro experiment and clinical efficacy. Therefore, solubility enhancement is needed for further investigation and determination of its pharmacological activity profiles. Since there are fewer reports studying this issue, it could become a future prospective research opportunity.


2020 ◽  
Vol 11 (4) ◽  
pp. 12006-12019

Scopoletin (7-hydroxy-6-methoxy coumarin) is a coumarin phenolic compound widely found in plants and includes coumarin derivatives that are superior in several types of plants. This article was created to provide information regarding the isolation process, analysis, and pharmacological activity. The method used is to study and analyze scopoletin articles from national and international journals. From the data sources studied, the yield of scopoletin extract in Morinda citrifolia L was 0.93%, Helichrysum italicum was 1.933mg / 100g. The scopoletin content in Convolvulus pluricaulis is 0.1738%, Artemisia annua is 0.3%, Lasianthus lucidus is 54 mg, and Morus alba L. (Po-sa) is 0.0009%. The highest yield of scopoletin extract was 0.93% found in noni (Morinda citrifolia L) using the Soxhlet method. The highest scopoletin content was 0.3% in Artemisia annua using column chromatography and recrystallization. Scopoletin identification can be done using Thin Layer Chromatography (TLC), High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectrophotometer (FTIR), Nuclear Magnetic Resonance, and Mass Spectrometry. Based on in vitro studies, scopoletin has pharmacological activities, including as an antihepatotoxicity, antibacterial, antifungal, antitubercular, and antioxidant. Pharmacological activities that have been proven in vivo are antithyroid, antihypertensive, anti-proliferative, anti-inflammatory, neurological, anti-dopaminergic and anti-adrenergic, antidiabetic, and antihyperuricemic activities. From the various pharmacological activities of scopoletin, it has the potential to be further developed.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2436 ◽  
Author(s):  
Wen Hu ◽  
Li Zhang ◽  
Sammy Ferri-Borgogno ◽  
Suet-Ying Kwan ◽  
Kelsey E. Lewis ◽  
...  

Uterine serous cancer (USC) is an aggressive subtype of endometrial cancer, with poor survival and high recurrence rates. The development of novel and effective therapies specific to USC would aid in its management. However, few studies have focused solely on this rare subtype. The current study demonstrated that the orally bioavailable, investigational new drug and novel imipridone ONC206 suppressed USC cell proliferation and induced apoptosis both in vitro and in vivo. Disruption of the DRD2-mediated p38MAPK/ERK/PGC-1α network by ONC206 led to metabolic reprogramming and suppression of both glycolysis and oxidative phosphorylation. ONC206 also synergized with paclitaxel in reducing USC cell viability. In addition, DRD2 overexpression correlated with poor overall survival in patients. This study provides the first evidence that ONC206 induced metabolic reprogramming in USC cells and is a promising therapeutic agent for USC treatment. These findings support further development of ONC206 as a promising therapeutic agent and improves survival rates in patients with USC.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jin Li ◽  
Liping Zhong ◽  
Haibo Zhu ◽  
Fengzhong Wang

As the major active ingredient ofCordyceps militaris, cordycepin (3′-deoxyadenosine) has been well documented to alleviate inflammation and oxidative stress both in vitro and in vivo. To explore the potential protective effect of cordycepin in fulminant hepatic failure, mice were pretreated with cordycepin for 3 weeks followed by D-galactosamine (GalN)/lipopolysaccharide (LPS) injection. Then we found cordycepin (200 mg/kg) administration elevated survival rate, improved liver function, and suppressed hepatocyte apoptosis and necrosis in mice with severe hepatic damage by GalN/LPS treatment. Further, cordycepin inhibited hepatic neutrophil and macrophage infiltration and prevented proinflammatory cytokine production possibly through suppressing TLR4 and NF-κB signaling transduction. The blockade of reactive oxygen species (ROS) and lipid peroxidation production by cordycepin was associated with the decrease of NAD(P)H oxidase (NOX) activity. Besides, cordycepin significantly prevented excessive autophagy induced by GalN/LPS in the liver. These data suggested that cordycepin could be a promising therapeutic agent for GalN/LPS-induced hepatotoxicity.


Sign in / Sign up

Export Citation Format

Share Document