scholarly journals Scaled-Up Production and Tableting of Grindable Electrospun Fibers Containing a Protein-Type Drug

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 329 ◽  
Author(s):  
Panna Vass ◽  
Edit Hirsch ◽  
Rita Kóczián ◽  
Balázs Démuth ◽  
Attila Farkas ◽  
...  

The aims of this work were to develop a processable, electrospun formulation of a model biopharmaceutical drug, β-galactosidase, and to demonstrate that higher production rates of biopharmaceutical-containing fibers can be achieved by using high-speed electrospinning compared to traditional electrospinning techniques. An aqueous solution of 7.6 w/w% polyvinyl alcohol, 0.6 w/w% polyethylene oxide, 9.9 w/w% mannitol, and 5.4 w/w% β-galactosidase was successfully electrospun with a 30 mL/h feeding rate, which is about 30 times higher than the feeding rate usually attained with single-needle electrospinning. According to X-ray diffraction measurements, polyvinyl alcohol, polyethylene oxide, and β-galactosidase were in an amorphous state in the fibers, whereas mannitol was crystalline (δ-polymorph). The presence of crystalline mannitol and the low water content enabled appropriate grinding of the fibrous sample without secondary drying. The ground powder was mixed with excipients commonly used during the preparation of pharmaceutical tablets and was successfully compressed into tablets. β-galactosidase remained stable during each of the processing steps (electrospinning, grinding, and tableting) and after one year of storage at room temperature in the tablets. The obtained results demonstrate that high-speed electrospinning is a viable alternative to traditional biopharmaceutical drying methods, especially for heat sensitive molecules, and tablet formulation is achievable from the electrospun material prepared this way.

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avanish Mishra ◽  
Cody Kunka ◽  
Marco J. Echeverria ◽  
Rémi Dingreville ◽  
Avinash M. Dongare

AbstractDuring the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2014 ◽  
Vol 513-517 ◽  
pp. 33-36 ◽  
Author(s):  
Zi Chang Xie ◽  
Ying Wang ◽  
Peng Wang ◽  
Lei Zhang

In this paper, W-doped TiO2 (W-TiO2) powder was prepared in hydrothermal method by mixing TiO2 and ammonium metatungstate. The catalysts were characterized by X-ray diffraction and ultraviolet spectrophotometer. The results displayed that W-TiO2 showed an anatase crystallite structure with 2 % W content. W-element in W-TiO2 was amorphous state. The guaiacol was degraded with the W-TiO2 in the visible light. It was a model compounds of lignin existed in the plant fibers. The degradation rate of guaiacol was increased with the photocatalytic time, as high as 88.21 % after 360 min irradiation. It was concluded that the W-TiO2 had an obvious photocatalytic activity under visible light. It can be used in the photocatalytic degradation of lignin.


2015 ◽  
Vol 815 ◽  
pp. 643-648
Author(s):  
Yin Zhu ◽  
Jiong Xin Zhao

The effect of heat setting methods on the structures and mechanical properties of high strength polyvinyl alcohol (PVA) fibre is studied in this article. The microstructure and mechanical properties of heat treated PVA fibre is investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and single fibre electronic tensile strength tester. Results show that the heat setting method with constant tension is a good heat setting method which can largely enhance the tensile strength of PVA fibre. During the heat setting process, the mechanical properties of PVA fibre are greatly affected by the temperature, tension and setting time. When the temperature is 220°C, tension is 5cN/dtex and setting time is 90sec, the tensile strength of PVA fibre increases from 12.0cN/dtex to 16.4cN/dtex in compare with the PVA fibre without heat setting


2021 ◽  
Vol 877 ◽  
pp. 27-33
Author(s):  
Ya Li Sun ◽  
Yi Hua Wen ◽  
Qing Cai Liu ◽  
Jui Chin Chen ◽  
Manual Reyes de Guzman ◽  
...  

A solution blending technique was employed to form a nanocomposite film of polyvinyl alcohol modified with carbon nanotube and zinc oxide (CNT/ZnO). The film was characterized using a tensile testing machine, X-ray diffraction, scanning electron microscopy, a contact angle device, and barrier property measurement. When the CNT/ZnO content was 1.2 phr, the results from mechanical property and water vapor permeation tests showed that the nanocomposite film had good tensile strength and water resistance. Moreover, CNT/ZnO improved the hydrophobicity of the film. CNT/ZnO/can improve the performance of PVA and is a good nanofiller of PVA. The results of this research might have the opportunity to be used as packaging film materials in the future.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


Sign in / Sign up

Export Citation Format

Share Document