scholarly journals 3D Printing of Drug-Loaded Thermoplastic Polyurethane Meshes: A Potential Material for Soft Tissue Reinforcement in Vaginal Surgery

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 63 ◽  
Author(s):  
Juan Domínguez-Robles ◽  
Caterina Mancinelli ◽  
Elena Mancuso ◽  
Inmaculada García-Romero ◽  
Brendan F. Gilmore ◽  
...  

Current strategies to treat pelvic organ prolapse (POP) or stress urinary incontinence (SUI), include the surgical implantation of vaginal meshes. Recently, there have been multiple reports of issues generated by these meshes conventionally made of poly(propylene). This material is not the ideal candidate, due to its mechanical properties leading to complications such as chronic pain and infection. In the present manuscript, we propose the use of an alternative material, thermoplastic polyurethane (TPU), loaded with an antibiotic in combination with fused deposition modelling (FDM) to prepare safer vaginal meshes. For this purpose, TPU filaments containing levofloxacin (LFX) in various concentrations (e.g., 0.25%, 0.5%, and 1%) were produced by extrusion. These filaments were used to 3D print vaginal meshes. The printed meshes were fully characterized through different tests/analyses such as fracture force studies, attenuated total reflection-Fourier transform infrared, thermal analysis, scanning electron microscopy, X-ray microcomputed tomography (μCT), release studies and microbiology testing. The results showed that LFX was uniformly distributed within the TPU matrix, regardless the concentration loaded. The mechanical properties showed that poly(propylene) (PP) is a tougher material with a lower elasticity than TPU, which seemed to be a more suitable material due to its elasticity. In addition, the printed meshes showed a significant bacteriostatic activity on both Staphylococcus aureus and Escherichia coli cultures, minimising the risk of infection after implanting them. Therefore, the incorporation of LFX to the TPU matrix can be used to prepare anti-infective vaginal meshes with enhanced mechanical properties compared with current PP vaginal meshes.

2016 ◽  
Vol 862 ◽  
pp. 174-181 ◽  
Author(s):  
Jiří Šafka ◽  
Michal Ackermann ◽  
Jiří Bobek ◽  
Martin Seidl ◽  
Jiří Habr ◽  
...  

This article deals with specific polymer composites modified for the Fused Deposition Modelling (FDM) which is a 3D print technology. These two phase systems involve thermoplastic matrix filled with natural fibres. The crucial demand of this progressive technology is put on the accuracy of the semi-product formed into the filament shape. To reach the smooth production of 3D prototypes the filament should have a constant diameter. In the article, individual steps of the polymer composite pelletization and following pre-processing and processing activities are described. Among these steps the extrusion of the filaments belongs and subsequent print test on “RepRap” device accompanied by optimization of building parameters. Tensile specimens were chosen for print with regard to maps mechanical properties of this newly developed material which was the final stage of this work. Tensile test curves were then compared with those graphs which can be found for the material produced by conventional technologies such as injection moulding.


2018 ◽  
Vol 157 ◽  
pp. 06001
Author(s):  
Juraj Beniak ◽  
Peter Križan ◽  
Miloš Matúš ◽  
Michal Šajgalík

In the present time there are many different plastic materials and composite materials suitable for 3D printing by deposition of semi-melted material. The proper selection of correct material with suitable material properties is dependent on the situation how the produced 3D model should be used. If we need to take into account just the visual look of used material or also the mechanical properties as strength is important for loaded models for final use. The aim of this paper is to publish outputs of experimental testing for 3D models from selected materials with regards to mechanical properties of produced testing parts. Produced 3D models are from PLA biodegradable thermoplastic. Models are prepared on Fused Deposition Modelling (FDM) 3D printer. Testing is based on prepared full factors experiment with four factors on its two levels. Measured values are Tensile strength of PLA testing 3D models. In the same time there are gathered information regarding the 3D printing process and compared to measured tensile strength values for each sent of testing parts. All the measured data are statistically evaluated also by Analysis of Variance (ANOVA method).


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2289
Author(s):  
Nishata Royan Rajendran Royan ◽  
Jie Sheng Leong ◽  
Wai Nam Chan ◽  
Jie Ren Tan ◽  
Zainon Sharmila Binti Shamsuddin

As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years. This review attempts to summarise the current approaches of using NFRC as a feeder for AM. The effects of fibre treatments, composite preparation methods and addition of compatibilizer agents were analysed and discussed. Additionally, current methods of producing feeders from NFRCs were reviewed and discussed. Mechanical property of printed part was also dependent on the printing parameters, and thus the effects of printing temperature, layer height, infill and raster angle were discussed, and the best parameters reported by other researchers were identified. Following that, an overview of the mechanical properties of these composites as reported by various researchers was provided. Next, the use of optimisation techniques for NFRCs was discussed and analysed. Lastly, the review provided a critical discussion on the overall topic, identified all research gaps present in the use of NFRC for AM processes, and to overcome future challenges.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Bolin Huang ◽  
S.H. Masood ◽  
Mostafa Nikzad ◽  
Prabhu Raja Venugopal ◽  
Adhiyamaan Arivazhagan

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 478
Author(s):  
Lucía Rodríguez-Parada ◽  
Pedro F. Mayuet ◽  
Antonio J. Gámez

The increased consumption of food requiring thermoformed packaging implies that the packaging industry demands customized solutions in terms of shapes and sizes to make each packaging unique. In particular, food industry increasingly requires more transparent packaging, with greater clarity and a better presentation of the product they contain. However, in turn, the differentiation of packaging is sought through its geometry and quality, as well as the arrangement of food inside the packaging. In addition, these types of packaging usually include ribs in the walls to improve their physical properties. However, these ribs also affect the final aesthetics of the product. In accordance with this, this research study analyses the mechanical properties of different relief geometries that can affect not only their aesthetics but also their strength. For this purpose, tensile and compression tests were carried out using thermoformed PET sheets. The results provide comparative data on the reliefs studied and show that there are differences in the mechanical properties according to shape, size and disposition in the package.


Sign in / Sign up

Export Citation Format

Share Document