scholarly journals Encapsulation of Black Seed Oil in Alginate Beads as a pH-Sensitive Carrier for Intestine-Targeted Drug Delivery: In Vitro, In Vivo and Ex Vivo Study

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 219 ◽  
Author(s):  
Abul Kalam Azad ◽  
Sinan Mohammed Abdullah Al-Mahmood ◽  
Bappaditya Chatterjee ◽  
Wan Mohd Azizi Wan Sulaiman ◽  
Tarek Mohamed Elsayed ◽  
...  

Black seed oil (BSO) has been used for various therapeutic purposes around the world since ancient eras. It is one of the most prominent oils used in nutraceutical formulations and daily consumption for its significant therapeutic value is common phenomena. The main aim of this study was to develop alginate-BSO beads as a controlled release system designed to control drug release in the gastrointestinal tract (GIT). Electrospray technology facilitates formulation of small and uniform beads with higher diffusion and swelling rates resulting in process performance improvement. The effect of different formulation and process variables was evaluated on the internal and external bead morphology, size, shape, encapsulation efficiency, swelling rate, in vitro drug release, release mechanism, ex vivo mucoadhesive strength and gastrointestinal tract qualitative and quantitative distribution. All the formulated beads showed small sizes of 0.58 ± 0.01 mm (F8) and spherical shape of 0.03 ± 0.00 mm. The coefficient of weight variation (%) ranged from 1.37 (F8) to 3.93 (F5) ng. All formulations (F1–F9) were studied in vitro for release characteristics and swelling behaviour, then the release data were fitted to various equations to determine the exponent (ns), swelling kinetic constant (ks), swelling rate (%/h), correlation coefficient (r2) and release kinetic mechanism. The oil encapsulation efficiency was almost complete at 90.13% ± 0.93% in dried beads. The maximum bead swelling rate showed 982.23 (F8, r2 = 0.996) in pH 6.8 and the drug release exceeded 90% in simulated gastrointestinal fluid (pH 6.8). Moreover, the beads were well distributed throughout various parts of the intestine. This designed formulation could possibly be advantageous in terms of increased bioavailability and targeted drug delivery to the intestine region and thus may find applications in some diseases like irritable bowel syndrome.

Author(s):  
K. Tirumala Devi ◽  
B. S. Venkateswarlu

Introduction: The development of safe drug delivery systems for a therapeutic agent with less side effects and more bioavailability to the targeted site is very vital in drugs formulation. Tinidazole (TZ) is a drug used to treat giardiasis, amebiasis for colon infections and other infections also such as trichomoniasis, bacterial vaginosis. But the oral bioavailability for the current using drugs low. So, the current study was aimed to develop colon targeted drug delivery system for Tinidazole (TZ) with polymeric nanoparticles (NPs). Methodology: The nanoparticles formulations of TZ were prepared with modified ionic gelation method using chitosan and hydroxypropyl methylcellulose phthalate (HPMCP) are in different combinations by magnetic stirring method followed by temperature modulated solidification. The solvent evaporation method applied to coat TZ nanoparticles with Eudragit S100. The prepared TZ nanoparticle were studied to evaluate physiochemical properties, In-vitro drug release, mucopenetration and In-vivo mucoadhesive studies were carried out. Results: The results of study indicate, 1:1 ratio of chitosan and HPMCP formulation of nanoparticles provides better spatial interaction between them and TZ with spherical porous and the particles size was diverging between 202 - 236 nm. In vitro release of TZ followed Higuchi and first order equations better than zero order equation. The drug release results of nanoparticles formulations of TZ indicate that the NPs have potential as a drug delivery system compare to uncoated TZ and coated nanoparticles have comparatively less mucoadhesive detachment force. Conclusion: In conclusion, the study was an evidence to use nanoparticles in colon targeted drug delivery systems for better bioavailability of drugs at targeted site and the biodistribution properties of drugs using nanoparticle will be depend on their composition, particle size and their adhesive abilities.


2013 ◽  
Vol 5 (15) ◽  
pp. 6909-6914 ◽  
Author(s):  
Guodong Liu ◽  
He Shen ◽  
Jinning Mao ◽  
Liming Zhang ◽  
Zhen Jiang ◽  
...  

2021 ◽  
Vol 104 ◽  
pp. 93-105
Author(s):  
Sikhumbuzo Charles Kunene ◽  
Kuen-Song Lin ◽  
Meng-Tzu Weng ◽  
Maria Janina Carrera Espinoza ◽  
Chun-Ming Wu

2021 ◽  
Vol 28 (3) ◽  
pp. 359-359
Author(s):  
Hongfei Liu ◽  
Jie Zhu ◽  
Pengyue Bao ◽  
Yueping Ding ◽  
Jiapeng Wang ◽  
...  

The authors are regretful for submitting and approving the publication of incorrect Figure 4 in this article. Below is the corrected version along with the revised caption. The electronic version of the article has already been corrected.


Author(s):  
Abdul Baquee Ahmed ◽  
Iman Bhaduri

Objective: The objective of the present study was to chemical modification, characterization and evaluation of mucoadhesive potentiality of Assam bora rice starch as potential excipients in the sustained release drug delivery system. Methods: The starch was isolated from Assam bora rice and esterified using thioglycolic acid and characterized by Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC) and Nuclear magnetic resonance (NMR). The 10% w/v gel formulation based on modified bora rice starch loaded with irinotecan (0.6%) was prepared and evaluated for various rheological properties, ex-vivo mucoadhesion using goat intestine and in vitro drug release study in phosphate buffer pH 6.8.Results: The chemical modification was confirmed by FT-IR and NMR studies with the presence of the peak at 2626.74 cm-1 and a singlet at 2.51 respectively due to–SH group. Ex-vivo mucoadhesion studies showed 6.6 fold increases in mucoadhesion of the modified starch with compared to native starch (46.3±6.79g for native starch; 308.7±95.31g for modified starch). In vitro study showed 89.12±0.84 % of drug release after 6 h in phosphate buffer pH 6.8 and the release kinetics followed Non-Fickian diffusion.Conclusion: The modified Assam bora rice starch enhanced a mucoadhesive property of the native starch and thus, can be explored in future as a potential excipient for the sustained release mucoadhesive drug delivery system.


2021 ◽  
Author(s):  
Chen Xin ◽  
Dongdong Jin ◽  
Yanlei Hu ◽  
Liang Yang ◽  
Rui Li ◽  
...  

Abstract Microrobots have attracted great attentions due to their wide applications in microobjects manipulation and targeted drug delivery. To realize more complex micro/nano cargos manipulation (e.g., encapsulation and release) in biological applications, endowing microrobots with shapes adaptability with the environment is highly desirable. Here, designable shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rate in a pH-responsive hydrogel. Combined with magnetic propelling, the shape-morphing microcrab (SMMC) is capable of performing targeted microparticle delivery, including gripping, transporting, and releasing through claws morphing. As a proof-of-concept demonstration, the shape-morphing microfish (SMMF) is designed to encapsulate drug (doxorubicin (DOX)) by closing mouth in phosphate buffer saline (PBS, pH~7.4) and release them by opening mouth in slightly acid solution (pH<7), which realize localized Hela cells treatment in an artificial vascular network. These SMMRs with powerful shape morphing capabilities and remote motion controllability provide new platforms for complex microcargos operation and on-demand drug release.


Sign in / Sign up

Export Citation Format

Share Document